This sliding piece puzzle has 13 pieces which form two intersecting disks. One disk can only do half turns, while the other disk can also do quarter turns. There are two piece shapes; seven triangular ones, and six which are teardrop shaped. Each disk has four of each.
The most interesting fact of this puzzle is that it occurs on the Rubik's cube (and the domino). If you scramble the cube using only the moves U and R2, then the corners of the top and right faces correspond to the teardrops, and the edges to the triangular pieces. A brief discussion of the subgroup <U, R2> can be found in David Singmaster's "Notes on Rubik's 'Magic Cube'", fifth edition, page 57.
Related puzzles are Turnstile, and especially Rashkey.
I got this puzzle as an advertising freebee, and on the back it has the title of the puzzle (TURN'PUSH ®) and "Lotica Patent no. 9503633". Other versions show Lotica as the puzzle's name. That patent number refers to the original French patent, filed 28 March 1995, by Serguei and Alexandre Bagdassarian. The equivalent world patent is WO 96/030097.
If your browser supports JavaScript, then you can play Turn'Push by clicking the link below:
The top and bottom triangle of one disk - the one that only does half turns - can swap but cannot mix with the other triangles. The pieces therefore fall into three separate groups, of 6, 5, and 2 pieces. This leads to a maximum of 6!·5!·2! = 172,800 positions. This limit is not reached because:
This leaves only 6!·5!/6 = 14,400 positions. For an explanation of the first restriction above, see Singmaster's notes, page 55-57.
A computer search gave the following result:
Face turn metric | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q u a r t e r t u r n m e t r i c | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Total | |
0 | 1 | 1 | |||||||||||||||||||||
1 | 3 | 3 | |||||||||||||||||||||
2 | 1 | 4 | 5 | ||||||||||||||||||||
3 | 2 | 6 | 8 | ||||||||||||||||||||
4 | 5 | 8 | 13 | ||||||||||||||||||||
5 | 1 | 8 | 12 | 21 | |||||||||||||||||||
6 | 2 | 16 | 16 | 34 | |||||||||||||||||||
7 | 7 | 24 | 24 | 55 | |||||||||||||||||||
8 | 1 | 12 | 44 | 28 | 85 | ||||||||||||||||||
9 | 1 | 28 | 64 | 32 | 125 | ||||||||||||||||||
10 | 4 | 44 | 100 | 40 | 188 | ||||||||||||||||||
11 | 8 | 90 | 136 | 52 | 286 | ||||||||||||||||||
12 | 28 | 136 | 204 | 64 | 432 | ||||||||||||||||||
13 | 2 | 48 | 248 | 264 | 84 | 646 | |||||||||||||||||
14 | 4 | 120 | 352 | 372 | 104 | 952 | |||||||||||||||||
15 | 20 | 188 | 576 | 484 | 136 | 1404 | |||||||||||||||||
16 | 30 | 382 | 722 | 492 | 168 | 1794 | |||||||||||||||||
17 | 88 | 508 | 860 | 574 | 140 | 2170 | |||||||||||||||||
18 | 2 | 112 | 816 | 912 | 316 | 148 | 2306 | ||||||||||||||||
19 | 4 | 222 | 782 | 646 | 294 | 16 | 1964 | ||||||||||||||||
20 | 18 | 210 | 704 | 340 | 32 | 8 | 1312 | ||||||||||||||||
21 | 16 | 180 | 268 | 48 | 512 | ||||||||||||||||||
22 | 2 | 57 | 16 | 75 | |||||||||||||||||||
23 | 4 | 1 | 5 | ||||||||||||||||||||
24 | 3 | 3 | |||||||||||||||||||||
25 | 1 | 1 | |||||||||||||||||||||
Total | 1 | 4 | 6 | 12 | 18 | 36 | 53 | 100 | 144 | 252 | 364 | 644 | 898 | 1504 | 1934 | 2544 | 2662 | 1988 | 1111 | 116 | 9 | 14,400 |
In Sloane's On-Line Encyclopedia of Integer Sequences this is included as sequence A079865.
This shows that any position can be solved in at most 20 or 25 moves, depending on whether you count a half turn of the disk that can do quarter turns as one move or two. On average it takes 16.587 and 14.569 moves. The hardest position is where the all teardrop pieces in the top halves of the discs are swapped with those in the bottom halves, and only the top triangle of the disk that does quarter turns is swapped with triangle in the bottom half.