Although often confused for a puzzle, the 7×7 Oktató Játék is actually part of a Hungarian trivia game. Its name means "Educational game". It consists of a cylindrical body, with seven movable pins labeled A to G, each with seven possible positions numbered 1 to 7. It functions very much as a combination lock. Inside the cylinder is a rod, and if the pins are set to the right combination, the rod is released. The game comes with 49 rods, each needing a different combination to be released.
The game comes with a folder containing 49 question sheets corresponding to the 49 rods. There are seven topics, each with seven question sheets, and each sheet has seven questions. The questions are multiple choice, with three answers. If you set the pins to the numbers that are next to the correct answers to the set of questions on the sheet, the rod is released.
The game was invented by Jószef Kárpáti and his patent, HU192353, was published on 15th January 1988.
Here are some pictures, and transcriptions and translations of all the text except for the 49 question sheets.
Text on the cylinder | ||
---|---|---|
Hungarian Text | English Translation | |
Törvény által védett
7x7 oktató játék Gyártja: Kárpáti BT. Szab. szám: 192.353 |
Protected by law
7x7 educational game Manufacturer: Carpathian Ltd. Pat. No.: 192.353 |
Text on the information sheet | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hungarian Text | English Translation | |||||||||||||||||||||||
Tájékoztató
|
Information
|
Text on the folder cover | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hungarian Text | English Translation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7x7
|
7x7
|
There are 7 pins with 7 positions each, giving 77 = 823,543 combinations. It turns out that for nearly all the rods, the combination has different numbers for each pin. In that case there are only 7! = 5040 combinations.
K | F | T | B | I | M | V | ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||||||||
A | 3 | 2 | 4 | 7 | 6 | 1 | 5 | 4 | 6 | 5 | 4 | 2 | 1 | 2 | 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 5 | 3 | 6 | 4 | 4 | 7 | 6 | 5 | 4 | 3 | 5 | 4 | 3 | 1 | 2 | 5 | 4 | 2 | 1 | 7 | 6 | 5 | 6 | 2 | |||||||
B | 5 | 1 | 7 | 6 | 1 | 6 | 4 | 5 | 1 | 7 | 6 | 1 | 7 | 7 | 4 | 6 | 7 | 5 | 6 | 3 | 2 | 1 | 4 | 6 | 2 | 1 | 4 | 7 | 7 | 7 | 1 | 2 | 3 | 5 | 6 | 2 | 1 | 7 | 5 | 6 | 2 | 1 | 4 | 7 | 3 | 5 | 6 | 2 | 7 | |||||||
C | 7 | 3 | 2 | 2 | 5 | 3 | 1 | 3 | 2 | 4 | 1 | 5 | 5 | 1 | 3 | 2 | 1 | 6 | 7 | 2 | 3 | 5 | 7 | 3 | 6 | 6 | 7 | 5 | 1 | 2 | 6 | 5 | 4 | 3 | 2 | 6 | 6 | 2 | 2 | 7 | 6 | 6 | 1 | 4 | 6 | 2 | 4 | 5 | 3 | |||||||
D | 1 | 4 | 1 | 5 | 4 | 2 | 6 | 1 | 4 | 1 | 3 | 7 | 3 | 5 | 1 | 5 | 5 | 2 | 3 | 7 | 4 | 4 | 2 | 1 | 7 | 2 | 2 | 1 | 6 | 1 | 5 | 4 | 2 | 1 | 7 | 4 | 3 | 6 | 4 | 4 | 1 | 3 | 6 | 3 | 2 | 1 | 2 | 1 | 6 | |||||||
E | 6 | 7 | 6 | 1 | 7 | 4 | 3 | 6 | 7 | 3 | 5 | 4 | 6 | 4 | 7 | 7 | 6 | 4 | 2 | 1 | 5 | 2 | 5 | 7 | 4 | 4 | 5 | 4 | 4 | 5 | 3 | 7 | 7 | 7 | 4 | 7 | 7 | 4 | 7 | 5 | 7 | 7 | 7 | 6 | 5 | 7 | 7 | 4 | 4 | |||||||
F | 4 | 6 | 5 | 4 | 2 | 7 | 2 | 2 | 3 | 6 | 2 | 6 | 2 | 6 | 6 | 4 | 4 | 7 | 1 | 4 | 7 | 6 | 3 | 4 | 5 | 3 | 1 | 3 | 2 | 6 | 4 | 1 | 1 | 2 | 5 | 3 | 2 | 1 | 3 | 1 | 4 | 5 | 3 | 2 | 1 | 4 | 3 | 3 | 1 | |||||||
G | 2 | 5 | 3 | 3 | 3 | 5 | 7 | 7 | 5 | 2 | 7 | 2 | 4 | 3 | 2 | 3 | 3 | 1 | 5 | 6 | 1 | 3 | 6 | 5 | 1 | 7 | 6 | 2 | 5 | 3 | 2 | 3 | 6 | 6 | 1 | 1 | 5 | 5 | 6 | 3 | 3 | 2 | 5 | 5 | 4 | 3 | 1 | 7 | 5 |
Only rods F5 and I1 have repeated numbers. All the others use all seven numbers only once.