PSION LZ]

{ A Users’ Guide to OPL|

IAN SINCLAIR




Psion LZ

A Dabhand Guide

Ian Sinclair



Psion LZ: A Dabhand Guide

© Ian Sinclair 1990
ISBN 1-870336-92-5
First Edition, first printing May 1990

Editor: Sharron Fellows
Typesetting: Bruce Smith, Andrew Wygladala
Cover Artwork: Atherton Clare Designs

All Trademarks and Registered Trademarks used are hereby
acknowledged.

All rights reserved. No part of this publication may be reproduced or
translated in any form, by any means, mechanical, electronic or
otherwise, without the prior written consent of the copyright holder.

Disclaimer: While every effort has been made to ensure that the
information in this publication is correct and accurate, the Publisher
can accept no liability for any consequential loss or damage, however
caused, arising as a result of using the information printed in this
book.

This book was typeset in 10/12pt Palatino using an Apple Macintosh
desktop publishing system.

Published by Dabs Press, 22 Warwick Street, Manchester, M25 7HN.
Telephone 061-773 8632, fax 061-773 8290, to whom all enquiries
should be addressed.

Printed and bound in the UK by BPCC Wheaton, Exeter, Devon EX2 8RP.

Contents

Chapter Summaries

Preface

1: Setting Up
International Data
The Notepad
The Stopwatch
Programming
Programming Languages
Compilers and Interpreters
Principles of Programming
Printing Out
Rows and Columns
Procedures

2 : Variables

Assignments

Types of Numbers
Working with Number Variables
String Section

Strings and Things
Getting Some In
Single Key Reply
Operators
Expressions
Translation Formulae
Functions

Print Appearance
Precision Numbers



Psion LZ: A Dabhand Guide Contents

Floating Point Numbers 61 o o N,
N liore, Noites o 6 : Finishing Touches 157
The Date Functions 157
3 : Getting Repetitive 65 EDaY agd Week 159
Loops and Decisions 70 Sg.:orfd ;;}s)g;lg %%
What ELSE? 72 Miscell any 173
WHILE and ENDWH 76 Tail End 175
Last Pass 78 z
String Functions 79 . :
LEN in Action 82 A : PC Link 177
NUM$ and VAL 83 s
A &noin Time 85 B : Boolean Actions 181
Inside, Upstairs and Downstairs 87
More Priceless Characters 89 C: ASCII Codes 183
The Law about Order 90
Complex Data - Put it on the List 92 . - -
Nuilaling Arays e D : Dabhand Guides Guide 185
4 : Menus and Procedures 103 Procedure Index 207
Menus 110
Rolling Your Own 112 Index 213
Put it on Paper 114
Foundation Stones 116
First Procedures 120
Play Away 123
Dealing with the Details 126
5: Filing Techniques 131
What is a File? 131
Knowing the Names 132
Filing in RAM or Datapack 134
Creating a File 134
Totalling a File 138
Choice of Use 140
Other Selections 144
Changing a Record 148
DataFile Work 149
Statistical Work with Files 138
Last Word 155



Chapter Summaries &Z

Chapter 1

Explains some of the new features of the Psion LZ Organiser, including
the international time-zones and telephone dialing codes, as well as an
explanation of the stopwatch and ‘daylight-saving’ functions. You are
introduced to the organiser programming language (OPL) - a variety of
BASIC, and how it works in principle. You are shown exactly how to
type in a program, save it and run it. There are the first of several
example programs for you to try throughout the chapter.

Chapter 2

Introduces the idea of a variable and assigning some value, number or
phrase, to a name. Number types, integer and float, are introduced,
and we see how number variables can be used. The other type of
variable, the string, is described and the important differences between
a number held as a string and a number held as a number-code are
emphasised. The next topic is the INPUT action of entering data into a
program while it is running, and this is followed by the single-
character type of Y/N input that can be so useful. The remainder of
the Chapter is concerned with numerical work with operators,
expressions and formulae, since so many users of the Organiser
require these actions. The important point of precision of number is
fully explained here.

Chapter 3

One of the very important computing actions, the loop, concerns
repetition of instructions, and this is introduced here. Repetition goes
hand in hand with testing, so that instructions are repeated only for as

Chapter Summaries

long as is required. This Chapter also deals with the important string
functions, such as counting characters, slicing letters and words, and
the conversions between number form and string form. Conversions
between upper and lower case of letters are also dealt with, and here
too is information about how to sort words into their alphabetical
order one of the most-wanted programming actions. The Chapter
ends by introducing the array, the way in which a list of data can be
treated as one entity while still allowing individual items to be picked
out.

Chapter 4

This Chapter contains some of the most important sections about
programming. Many beginners to programming believe that learning
the programming language is the most important part of
programming, but this Chapter points out that planning is the key to
programming in any language.

Menus are an important help to good program structure, so that the
menu ability of the Programmer is fully explored. The design of a
simple program from the foundation level is fully explained using an
example which requires no specialised knowledge. By showing the
development of this programs from outline idea to finished code you
can see how you need to proceed for yourself in designing your own
programs. This Chapter also explains the important principle of
procedures.

Chapter 5

Files and filing of data forms the subject of this Chapter, since filing is
one of the strong points of the Organiser. The keywords of file, Record
and Field are explained, and the differences between filing to RAM and
filing to Datapack are emphasised.

Files are then introduced by using simple examples that require the
minimum of keyboard use, and the actions that can be carried out on
files are exemplified by a totalling program. The design of filing
programs is dealt with, and attention is given to how a record can be



Psion LZ: A Dabhand Guide

changed, and how records can be selected by name, by dates or by
other criteria. The extremely good statistical actions of the Organiser
are shown used for analysis of data in files.

Chapter 6

Covers briefly a number of topics that have not been dealt with earlier.
The date functions are treated in more detail, showing how dates can
be used in integer number form, and the conversion to and from this
form. The error-trapping system is then examined, showing how you
can avoid the indignity of having a program stop because of an entry
error, and warning of the limitations of the system. The Organiser has
better facilities in this respect than most desktop machines. The beep of
the Organiser can be controlled, and this also is dealt with. The
remainder of the Chapter is concerned with program instructions
which are more specialised and therefore less frequently used. After
this, its all yours!

Conventions

A number of simple conventions are used throughout this Dabhand
Guide to make things easier to follow, we hope!

All listings and Psion responses are displayed in a different typeface to
that used for the text of the book. The typeface is Courier, and an
example is shown here:

proixa:
print "Hello"

Preface lLZ

The Psion Organiser is by now a well-proven product which has
enjoyed considerable success as a truly pocket-sized machine with
very considerable capabilities. The earlier models, however, were
always relatively handicapped by their screen size which permitted
only two lines of text. The new LZ models with a four-line screen,
allow for a very considerable expansion of what is possible with a
portable computer.

The features that made the earlier models so successful have been
retained, and new facilities added. These are international dialling
codes and times in 400 cities in 150 countries around the world, a
notepad for short pieces of text, and a stop-watch action for the built-in
clock. More importantly, however, the four-line screen also allows the
Lz Organisers to be programmed more effectively, making them an
extremely formidable portable machine that can challenge anything
else around once you have come to terms with the keyboard.

This book does not deal with the built-in actions that are common with
the older machines, though the newly introduced facilities are covered
in some detail. The main emphasis is on the programming of the LZ or
Lz64 model in its built-in OPL programming language so as to enhance
the use of the machine now that the four-line screen makes such efforts
much more worthwhile. The examples have been chosen to reflect the
wide variety of applications for the Organiser which, because of its
versatility, is used as much as a desktop machine as it is as a portable.
All of the programming examples have been typed and used on the
Organiser itself, then copied to a PC machine for printing on a Star
LC24-10 dot-matrix machine. For this reason, all examples are short
and can be tried and used with the minimum of effort. The PC Link
which allows Organiser text to be transferred to and from a PC



Psion LZ: A Dabhand Guide

machine has been dealt with in an Appendix. This is because the
manual for the PC-Link is by no means easy for the casual user as
distinct from the experienced computer owner.

I am greatly indebted to David Atherton and Bruce Smith of Dabs
Press for providing the Psion Organiser LZ64 on which this work was
done, and to Psion for further technical information, particularly on
the PC Link itself.

Ian Sinclair
Autumn 1989

10

1: Setting Up &Z

[ shall assume that by the time you read this, you have already loaded
batteries into the LZ Organiser and checked out the method of
switching on and off. Remember that if you have a PC Link connected,
the Organiser will be switched on whenever the PC is switched on.
Therefore, if you want to switch the Organiser off when the PC is on,
you need to disconnect the link. I shall also assume that you have
made use of the facilities that are available on the older machines, such
as the calculator, calendar, database, diary, alarm and the choice of
languages. For the new user of the Organiser these facilities are clearly
explained in the manual, and there seems little point in repeating the
instructions here.

However, for the benefit of users of the older machines who are
upgrading to the LZ, and for new owners who may only have seen one
of the older models demonstrated, or used by a friend, this book starts
with a description of the facilities that have been added to the machine
in order to enhance its value and make good use of the larger screen
space. The most immediately noticeable of these facilities is the time
display in the top right-hand corner of the screen, but the main
additions are those which appear in the menu.

International Data

When you switch the LZ Organiser on by pressing the ON button, you
will see the screen choice shown as:

Eind Save Diary
Calc Time Notes
Horld Alarm Month

Pressing the key that is marked with the yellow downwards-facing

11



Psion LZ: A Dabhand Guide

arrow a few times will shift the pattern of words so that additional
lines appear:

Erog Afiles Utils

Comms Qff
A flashing block, the ‘cursor’, appears on the first letter of the first
word, Find. Selecting from this ‘menu’ can be done in either of two

ways:
1)  Use the keys that are marked with the arrows to move the cursor
to the item you want, then press the EXE key (bottom right) or

2)  Press the key marked with the first letter of the word that you
want. For example, to obtain international data, you should press
the ‘W’ key or press the EXE key while the cursor is over the word
World. This will produce a display such as:

Monrovia
Liberia

Tue 13 Jun 8:26a
Dial: 010 231

which shows a city, country, relative time and the international
telephone dialling code for making calls to that city.

The time is shown as relative to Greenwich Mean Time (GMT), with no
adjustments for any summer-time changes. This means that when you
select cities in the UK, such as London or Nottingham, you will see a

time which in summer will be one hour earlier than the time on a local -

clock. Obviously, since not all countries alter clocks for summer-time,
and those that do so do not necessarily alter the clocks at the same
time as we do, this cannot be programmed into the Organiser. One
item that you do have to program in, however, is the UK alteration to
summer-time.

When you select the Time option, you should see a display of the form:

Tue 13 Jun 1989 Wk24
9:43:36 am (D)
London

United Kingdom

12

Setting Up

in which the time is followed by a (D) to indicate that daylight saving
is being used. When the clocks are set back in October, you should not
manually alter the time. Instead, press the MODE key and then the
right-arrow key three times to reveal the daylight-saving choice from
the set:

Stopwatch Timer 3Set Raylight-saving

Having made this choice, select Off from the On/Off choice that is
then revealed. Similarly, if you have started using your Organiser in
the Winter, on the day in March when the clocks are set forward you
should select Daylight-saving and then On to advance the time by one
hour.

In this way, the time as displayed on the clock when you select Time is
always in agreement with your clocks, but the GMT is maintained
unaltered so as to ensure that the time displays for other cities around
the world will be correct. Never adjust the time manually by one hour
for summer-time start or finish because this will put all the
international times out by one hour during the summer. If you want to
telephone an office abroad, you will have to know whether or not they
have set their clocks on, but since you know the GMT for that region
you can easily add an hour if this is needed.

The international telephone dialling codes are usable from any country
outside the one that you are dialling, assuming that you are dialling
from a country that uses modern telephones with international
dialling. If you are dialling back to Great Britain from another country,
the code you need is 044, which is not in the Organiser list, but which
you can add in a note.

The Notepad

The LZ Organiser provides for Notepad use selected from the Notes
item on the main menu. Selecting Notes provides you with a screen
which shows a quill pen and the current time on the top line, and the
word Notepad: at the start of the next line. You can now enter text by
pressing the buttons - remembering that the layout is in alphabetical

13



Psion LZ: A Dabhand Guide

order rather than in the pattern that is used by typewriters and
desktop computer keyboards.

* The text will be printed in one line on the screen, scrolling across
as you add more words, unless you press the EXE key to provide
a new line. You can use the EXE key in the same way as you use
the Carriage Return on a typewriter, or the ENTER/RETURN key
on a computer.

* To get a capital letter, hold down the SHIFT key (bottom left) and
press the CAP key which is marked with the yellow up-arrow,
then release both keys. The alphabetic keys will now provide
capital letters. Repeat the SHIFT-CAP action to return to lower
case (small} letters.

* To move down a line, press the down-arrow key, to move up a
line subsequently, press the up-arrow key.

¢ If you want to switch to numbers, then either hold down the
SHIFT key as you press the keys that are marked with numbers
above or hold down SHIFT and press NUM (then release both) to
make the keys give numbers rather than letters when they are
pressed without using the SHIFT key. When you are set for NUM,
the cursor no longer flashes, and other letter keys such as
G,HM,N etc give the punctuation and arithmetic symbols that
are marked above the buttons.

* The DEL key deletes the character (letter, digit or punctuation
mark) to its immediate left. There is no provision for deleting the
character at the cursor position.

¢ Use the ON/CLEAR button to leave the Notepad action.

When you have typed a note — remembering that a brief note that you
can read quickly is much more useful than a long note that you might
ignore — you can press the MODE button for a menu (press ON/CLEAR
to return to the Notepad). This menu offers:

Eind Save Load New Home End Calc Sort Number Password
Print DRir Copy Delete Zap

14

Setting Up

which looks bewildering when you first see it, particularly since you
can only ever see three or four of the choices on the screen at any one
time and the menu repeats as you use the arrow keys to scroll across
the screen. The uses of these options, ignoring the order above, are as
follows.

Home and End place the cursor at the start and the end, respectively,
of your note so that you can get to these points without the need to
keep pressing the arrow keys.

Find allows you to type a word, or part of a word, so that when you
press the EXE button the word or part-word will be found in the text of
the note and marked with the cursor. Pressing the EXE button again
continues the search until you see a notice to the effect that there are
NO MORE ENTRIES.

Save allows you to store the note as a file in the memory. This lets you
delete the note from the Notepad but recall it later. If you do not use
Save, but do not delete the note you have typed either, it will remain in
the Notepad until you do delete it or until the memory is cleared (by
taking too long about changing the battery, for example).

* When you opt for Save, you will be shown a filename of:

A:Notepad

which you can use by pressing EXE. However, it is more likely
that you will want to use your own filename such as JUN13 or
CHAS or EXHIB — something that reminds you of the substance of
the note.

New allows you to pick a new filename for a new Notepad. You will
be reminded if there is any note in the current Notepad that you have
not saved.

Zap deletes all trace of any note in the Notepad you are using. Saved
material is unaffected.

Dir produces a list of saved notepad files. You are shown the A:
reminder first, in case you want to use B: or C: (if you have additional

15



Psion LZ: A Dabhand Guide

packs fitted). Pressing the EXE button then displays the files of that set.
Press ON/CLEAR to return. Load allows you to see a list of current files
and select one to put into the current Notepad and view.

Delete allows you to delete a file, as distinct from the current note
(which can be deleted with Zap). Always look at a file before you
delete it.

Number will produce numbered lines for you as you type your note.
The numbering starts at the second line, under the filename, so if line
numbering is important you should always start a note of this kind by
pressing the EXE button. The numbering is recorded when you Save
the file and will appear again when you Load it.

Sort will sort lines alphabetically, using the first word in the line. The
sorting is carried out regardless of case (ie, capitals are not sorted
separately) and this is an excellent way of putting a set of names into
alphabetical order.

Calc is used when part of a note contains numbers and you want to
find the result of a function such as the SUM of the numbers, how many
number ITEMS exist, the MAX or MIN number size, or statistical results
like MEAN (average), VARiance or STandard Deviation.

¢ To use Calc, each number has to be entered with an ‘=’ sign
before it, and the function must be entered with an ‘=" sign after
it. Selecting Calc (you will need to press EXE to do so) will then
produce the figure for the function result.

Password allows you to specify a password without which the
Notepad cannot be read (except by someone who understands how
the Organiser stores its data). If you take this option, you will be asked
to type the password twice — the word does not appear on the screen
except in the form of a row of asterisks to indicate the number of
characters.

If you subsequently forget your password, you will never be able to
recover the information in the data file.

16

Setting Up

* Don’t keep your credit card PIN nuinber on a Notepad, even
with password protection, unless you are very confident that no-
one could ever know your password. Also remember that
anyone can delete a file with a password — see below.

* Don't use obvious passwords like your date of birth, car
registration, spouse’s name etc.

¢ If you subsequently want to change a password, select
Password, type the existing password, then the new one (twice).
Use the EXE button in place of a new password if you want to
cancel the password.

* Password affects only the file you apply it to — other files can be
loaded and viewed without any request for a password.

e If you delete a file with a password, the need for a password is
also removed, and another file that you create with the same
name will not require a password.

Print allows you to send a Notepad file to a suitable printer (a serial
printer). If no printer is connected, you will get the ERROR DEVICE
MISSING message as a reminder, and you will have to press the SPACE
key to get back to normal working.

Copy allows the contents of a Notepad to be copied to another
memory pack (usually from A: to B: or C:). Remember that data should
not be copied to a Datapack unless you intend it to be permanently
stored, because you cannot erase a Datapack as easily as you can erase
memory.

The Stopwatch

The Stopwatch facility is an addition to the Time menu on the LZ
models only. To use the Stopwatch:

1)  Select Time and then press MODE

2) Select Stopwatch - you will then see the screen display:

17



Psion LZ: A Dabhand Guide

STOPWATCH
00:00:00.00

3) To start timing, press EXE.
4)  To stop timing, press EXE again.

5) You can restart and re-stop as many times as you like, getting
a cumulative time, by pressing EXE repeatedly.

6) You can reset the Stopwatch to zero again with the DEL button
after pressing EXE to stop timing.

* If you press DEL when the Stopwatch is counting, the display
shows the time at which you pressed the DEL key, but the count
continues (a flashing dot reminds you of this). To return to the
current count, press DEL again.

* If during counting, you press the SPACE key, this prints the
elapsed time as a lap time. Then when you next press the SPACE
key, you will get the next lap time, ie, the time that has elapsed
since the previous time the SPACE key was pressed.

e As usual, the ON/CLEAR button returns to the normal Time
menu on the first press, and to the main menu on the second
press.

For the new owner of an Organiser, this description of the added
features will be a good introduction to the methods that the Organiser
uses for its other actions. With the guidance of the Manual, you will be
able to work with these other actions quickly and with few difficulties.
The remainder of this book is now concerned with the more difficult
topic of programming the Organiser so that it can be used for
applications that are outside the range of the preset ones that are built
in, or added by way of inserted packs.

Programming

Now the reasonable question to ask at this point is - why should you
program the computer for yourself when for a few hundred pounds

18

Setting Up

you could have as many professionally-written programs as you might
need? The figure of a few hundred pounds is one good reason in itself
if you are a home user, though for business purposes this might be
chicken-feed. The one single overwhelming answer to this question is
that only by programming for yourself do you get exactly what you
want.

Suppose, for example, you run a small mail-order catalogue group,
and you want to keep tabs on who has ordered what, how much has
been paid, and when delivery is made. Now there isn’t a commercial
program to do this, as far as I know. You could buy a set of business
program packs such as Spreadsheets and Databases and Accounts
packages, but you’ll be overwhelmed by them. They all need a lot of
learning to use, and they all do much, much, more than you need. A
business accounts program, for example, keeps a dozen ledgers going,
has entries for aged debtors and all sorts of other accountancy terms,
and you spend most of your time trying to work out which bits are
needed. Since you can’t dispense with any of them, though, you have
to try to use them all, just as if you were running a medium-scale
business.

By spending just a fraction of that time and a lot less money on
learning to program for yourself, you could have your own program,
tailored to your own requirements, doing what you need of it.
Remember that when you buy a program written by someone else, the
program is in charge, and decides how you have to proceed. When
you write your own program, you are in charge, and you decide what
the program produces. If you don’t need VAT, the program doesn’t
calculate it. If you need a list of customers in alphabetical order, or in
order of how much they owe you, your program can be made to give
that - it’s all up to you to decide what you want and arrange for it to
be supplied. Control, then, is the main reason for wanting to program,
whether you use your Organiser for business or for pleasure.

There’s another reason, which has nothing to do with business but a
lot to do with curiosity. You can use a computer as you might use a
car, putting up with its odd little ways, but never doing anything to
understand them. Using a computer in this way is never entirely

19



Psion LZ: A Dabhand Guide

satisfying — you always feel that the machine will have the last word.
Just as by understanding what makes a car tick (or run smoothly as the
case may be) you can drive it better and avoid breakdowns; you can
also, by learning more about the computer become able to make better
use of it. Computers are still at an early stage of development. It would
not be an exaggeration to say that small computers are today in much
the same state as cars were when the Model T Ford was introduced. In
any case, the more you know about the machine, the better you can
drive it. In addition, programming is a very considerable aid to
thinking. When you learn to program, you also learn to break a
problem down into manageable pieces, and work on the pieces. If you
are programming for some business reason, you’ll learn a lot more
about your business from writing the program, than you imagined
possible. If you program for a hobby reason, then both your hobby and
your computing will come on in leaps and bounds. Programming is
the most stimulating mental activity that there is, and you don’t have
to start at Professor level to get a lot from it — just watch a class of 8-
year olds at work with a computer!

Programming Languages

A program for a computer is a set of instructions, and a programming
language is concerned with how these instructions are written. When
you use a computer, as distinct from programming it, you use
‘commands’. In a program, the words of command are written in the
sequence in which we want them to be carried out, but they are not
carried out until we issue another command. The difference is
important. A direct command, like using Calc and typing:

2.55*3.62
is carried out by typing the instruction and then pressing EXE. If you
want to repeat the command, you have to go through all of these steps
again.

A program, by contrast, can consist of a number of separate steps,
written once, and which can be executed as many times as you like just
by using one command. The words or codes that are used to mean
instructions in a program are what make up the programming

20

Setting Up

language, along with the way that the words must be used, which is
the ‘syntax’ of the language.

One very useful language, called BASIC, was originally devised to
solve the problem of teaching the language FORTRAN. The letters of
BASIC mean Beginners All-purpose Symbolic Instruction Code, and
that’s what it-originally was — a simple language intended to serve as
an introduction to programming, and modelled on one of the great
original computer languages, FORTRAN. The advantages of the original
BASIC was that it was simple to learn, but close enough to the methods
of FORTRAN to make the conversion easy. BASIC could be made in
interpreter form (see later), so that mistakes could be easily and
quickly found and corrected. Finally, BASIC could be written in code
that took up only a small amount of memory. It was for precisely these
reasons that when microcomputers became available, they featured
BASIC as their programming language.

Since then, BASIC has developed a long way, and it's no longer just a
language for beginners. As the language grew, it acquired more
features from other languages, and without losing its simplicity.
Consequently, it soon became a language in its own right, not just a
path to an almost-forgotten FORTRAN. Because of the intensive use of
BASIC versions on small computers, the language became a general -
purpose one, good for all kinds of programs whether your interests
were in accounts, science, engineering, text editing, or whatever. Other
languages tended to remain specialised, good for only one or two
selected purposes, while BASIC grew to fit the needs of users.
Nowadays, more people can program in BASIC than in any other
language, and they don’t necessarily learn it so that they can learn
another language. After all, you don’t learn English so that you can
later learn Icelandic or Sanskrit. The Organiser Programming
Language (OPL) is a modern variety of BASIC.

Compilers and Interpreters

Like many other languages, BASIC can be ‘interpreted’ or ‘compiled’,
but is nearly always interpreted on small computers. Whatever

21



Psion LZ: A Dabhand Guide

language you use to express your program in, it has to be converted
into number codes before it can have any effect on the computer.
Interpreting and compiling are two methods of carrying out this
conversion.

When a language is interpreted, each instruction is taken, converted
into machine code, and then executed before carrying on to the next
instruction. In practical terms, this means that each instruction word of
the language calls up a set of number-codes to do the work.

A compiled language, by contrast, converts all of the instructions of a
program into a large machine code program, which is very often
recorded on disc rather than being run at the time. The action of
translating from high level language into machine code is called
compiling. Once the program has been compiled, it is a machine code
program which will run when you start it. OPL is a compiled language,
which means that you write it in ordinary text, and this text file is
translated into a machine code file, which is the part that runs. This
distinction between the plain text source code and the translated
machine code is very important to remember when you start to work
with OPL.

Principles of Programming

On the surface, programming is quite straightforward. You type a list
of instructions in the order that you want the machine to carry them
out. You record this set of instructions, which is the source code.
Finally, you make the translator convert them into machine code,
which is also stored so that you can load it in when you need it. That's
all.

It would be just as simple as this if the machine could understand
English, but it can’t. OPL, like each other computing language, allows
you to use a limited number of instruction words. This number can be
large, 130 or so for OPL. It's still very small, however, compared with
the thousands of words that a ‘natural’ language like English uses, and
one of the problems of learning programming is trying to express what
you want to do with such a limited number of words. This means that

Setting Up

you have to break down any problem into small pieces that can be
tackled by using a few of these ‘reserved words’ of OPL. The other
snag is that each reserved word or keyword has to be used in a very
precise way, the syntax of the word. If you don’t use the word
correctly, the instruction cannot be carried out, and you will get an
error message that reads ‘syntax err’ to draw your attention to it.
Programming means precision, then, and how you use and place
words is as important in a programming language as it is in Latin —
which is why Latin scholars make good programmers. In short,
programming teaches you to analyse problems, and to tackle them
with precision — and that can’t be bad training for anything.

We'll see as we progress how all of this can be done, but at the start we
can’t really illustrate problem solving with OPL when we don’t know
much OPL. The best way to get started is the practical way, because
when you have done something for yourself, you remember it better
than when you have only read about it. I'll assume, then, that you can
carry out the instructions in this book as and when they appear. The
first step is to practice how to start using OPL when you want it, and to
write, store and translate programs that you have typed.

Printing Out

When you think of what the Organiser does when you run programs
on it, you soon conclude that its actions fall into four categories. One is
accepting data that is typed in, another is printing data on the screen
or on paper. A third category is calculation, arrangement, or other
work. The fourth is memory saving or loading. Very often the third
type of action, the actual computing, takes the least time. The first two
are of very considerable importance, because they are the actions that
you are most directly concerned with. In this Chapter, then, we'll look
now at how you can write program instructions that result in
something being printed on to the screen, or on to paper. Until you
have some mastery of this particular craft, you can’t very well tell
whether your computer is doing anything useful or not.



Psion LZ: A Dabhand Guide

The first step, though, is to check that you can save and load an OPL
program. That’s not because there’s any difficulty about it, but because
it's different from the techniques that you use with other types of
programs. The simplest test involves a very simple type of program,
but it will give you the confidence that you need. It can be a very heart-
breaking experience to spend a lot of time typing in a program, and
then find that it vanishes when you switch off because it was not
correctly recorded. If anyone tells you that they have never done it,
don’t believe them. We all have, and one good method of losing data
in this way is to be unfamiliar with the recording system.

Start, then, by selecting Prog from the main menu. This gets you to a
menu that consists of:

Edit New Run
Print Dir Copy
Lelete

and to start with you need to select New so as to start a new file. You
will be asked for a filename, subject to the usual rules of a maximum of
eight characters starting with a letter or digit. Try ‘test1” for your first
effort, so that your screen will show:

New A:testl

and you can press EXE to enter this. The screen will now show:

testl:

with the flashing black cursor, the marker that shows where anything
that you type will be placed, immediately after the colon. Now you're
ready to type a program. OPL allows you to type program instruction
words in either lower case or upper case letters. The EXE key is used to
take a new line when you are typing.

Now type the words ‘rem try’. You can use the DEL key to delete
letters if you make a mistake, but you are not likely to make any
mistakes in something as simple as this. It doesn’t matter whether you
type ‘rem’ or ‘REM'. This is a command word for the computer, and no
matter whether you type it in upper or lower case, the computer will

24

Setting Up

deal with it correctly. Check that this looks correct, and then press the
EXE key. The effect of this is to place this instruction line into the
memory of the machine. As you type each character you will see it on
the screen, in lower case or upper case, at the cursor position. When
you press the EXE key, the cursor moves to the next line down, ready
for the next instruction and enters the previous line into the memory.
Even if your ‘line’ happens to take up more than one line on the
screen, don’t press EXE until you have finished and want the complete
line placed into the memory. Now type the rest of the lines, as shown
below, remembering to press the EXE key after you have finished
typing each line:
testl:rem try

rem another
rem again

The program is now complete, and what you see on screen is called a
listing. Listing an OPL program means that the computer prints on the
screen whatever you have stored in its memory — OPL uses the Edit
command to produce such a listing, and you have to select which
listing you want if you have created more than one program. Now to
make the recording. First of all you have to press MODE, which brings
up the menu:

Tran Save Quit Find Home End Zap Xtran

of which you select Save, meaning that the program file is to be stored
in the memory until you delete it. The filename will automatically
appear. Press EXE to see this recorded, so that the Organiser returns to
the programming menu. You can now prove that the program has
been recorded by selecting Dir from this menu. When the screen
shows:

DIR OF OPL
Dir A:

you can press EXE again to bring up the file name of testl. This is
shown as the line:

Opl testl 41



Psion LZ: A Dabhand Guide

in which the 41 is the number of memory spaces used to store the
program. To check that the program can be returned into use return to
the Prog menu by pressing ON/CLEAR, select Edit from this Prog
menu and use the filename of test1 and reply Y when you are asked to
confirm. This will remove the text from your screen. However, the

next time you select Edit and use the filename of ‘testl’ you will see :

the program return. To try this, press MODE and select the Quit option,
then select Edit as before.

Now if this were a ‘serious’ program, we could use the Tran option of
the Programming menu to translate the program into something that
would run, but there is no point with this example. The keyword REM
simply means Reminder, it's a note to yourself and it does not make
the computer do anything. Because of that, it isn’t translated, so there
is no point in using Tran in this example. The save and load actions are
the ones that we want to make certain of at the moment.

Once you can reliably save your programs to the memory, check that
they are in the memory, and then re-load them, it's good to know that
a few seconds more work will save your efforts so that you don’t have
to type them all over again. You can save a partly-typed program, or a
program which has mistakes and won'’t run, so that you can come back
to it another time and finish it. A further step is to save your text files
on a PC disc by using the PC Link to transfer the files into the desktop
machine, and that point is noted in Appendix A.

Let’s now take a look at the difference between the sort of direct
command that you would use along with Calc, and a program
instruction. We have already seen how Calc will multiply the numbers
2.55 and 3.62. If you want to make a program of this you would select
New, then type a file name — we could use ‘prolx1’ for this one. When
you press EXE, the filename should now appear on the first line with a
colon following it — you do not need to type the colon, and problems
will be caused if you do. Press EXE to take a new line and now type the
program which should appear as:

26

Setting Up

prolxl:

print 2.55*3.62

get
The word ‘print’ can be in upper case (PRINT), or in lower case (print).
You have to start with print (or PRINT), because a computer is a dumb
machine, and it obeys only a few set instructions. Unless you use the
word ‘print’, the computer has no way of telling that what you want is
to see the answer on the screen. It doesn’t recognise instructions like
‘GIVE ME’ or ‘WHAT IS’, only these few words (about 130 of them) that
we call its ‘reserved words’, ‘keywords’ or ‘instruction words’. PRINT
is one of these words. So that you can recognise these reserved words
more easily in this book, I shall print them in upper case (capital)
letters in the text from now on. You know by now, however, that you
can type them in either upper case or lower case, and the machine will
take the same course of action. The program examples will show
mainly lower case lettering, because that’s the way they were typed.

The PRINT instruction, then, is the way that we get the computer to
provide information to us. In OPL, however, PRINT has the effect of
putting information on the screen for only a moment, and then
returning to the menu. The last line in the program consists of the
keyword GET which makes the computer wait for a key to be pressed.
This has the effect of holding the screen as it is, allowing you to see the
result of the program instruction. When you press a key, any key, you
will see the menu return.

To see it all happen, return to the menu by pressing MODE and select
Tran. The translation is over in a moment, and you will see the Save
instruction appear so that you can ensure that both the source code
and the translated version will be saved together. Press EXE to execute
the Save and return to the menu, now select Run. The program name
will already be in place, and when you press the EXE button the
program, such as it is, will run and produce the result 9.231 on the
screen. Pressing any key then returns you to the menu.

All computer uses involve inputs, processes, and outputs. The hard
part about programming is not learning the language of OPL, it’s
learning how to get what you want from these three actions. For the

27



Psion LZ: A Dabhand Guide

moment, we'll leave inputs aside, and concentrate on outputs and a bit
of processing. Processing means doing whatever we want to do with
numbers or words. It can be as simple as adding two numbers, or as
complicated as putting a set of names and addresses into alphabetical
order of surname. Summing it up, it means all of the actions that make
a computer so interesting and so useful. Let’s start programming then,

with the arithmetic actions of add, subtract, multiply and divide. '

Computers aren’t used all that much for calculation, but it's useful to
be able to carry out calculations now and again. In addition, you are
much more likely to recognise the sort of instructions that use
numbers than the ones which are used to work with words.

prolx2:

print 5.6+6.8
print 9.2-4.7
print 5.06*6.08
print 7.06/1.4
get

The listing above (‘prolx2’) shows a short program which will print
some arithmetic results. The process here consists of four bits of
arithmetic, each with an output. Take a close look at this, because
there’s a lot to get used to in these few lines. To start with, the lines are
arranged in the order in which the instructions will be carried out. The
next thing to notice is how the number zero on the screen is slashed
across. This is to distinguish it from the letter O. The computer simply
won't accept the 0 in place of O, nor the O in place of 0, and the
slashing makes this difference more obvious to you, so that you are
less likely to make mistakes. The zero that you see on the keyboard is
not slashed, but it is on a different key, and is differently shaped. Type
some zero’s and O’s on the screen so that you can see the difference.

Now to more important points. The star or asterisk symbol in the third
line is the symbol that OPL uses as a multiply sign. Once again, we
can’t use the ‘x’ that you might normally use for denoting
multiplication because ‘x’ is a letter. There’s no divide sign on the
keyboard either, so OPL, like all other computing languages, uses the

28

Setting Up

slash (/) sign in its place. This is the diagonal line which is on the same
key as the letter ‘F’ (press the SHIFT key along with the ‘F’ key).

So far, so good. The program is entered by typing it onto the screen,
just as you see it, using GET for the last line. You then:

1)  Press MODE and select Tran.
2) Press EXE again when the Save option appears.
3) Select Run and press EXE to see the program work.

¢ If you do not Translate a program, but only save the text, it
cannot be Run. You can, however, save a program at any stage
to edit later, and then Translate it when it is complete. If you Edit
a program which has already been translated, it must be
translated again before you can Run the new version.

When you Run this particular example, the last line should give you
some idea of how precisely OPL can carry out its arithmetic, showing
11 places of digits beyond the decimal point. Later, we’ll look at how
numbers like this can be rounded off to a smaller number of places.
When you follow the instruction word PRINT with a piece of arithmetic
like 5.06%6.08, then what is printed is the result of working out that
piece of arithmetic. The program doesn’t print 5.06*6.08, just the result
of the action 5.06*6.08. When the program stops printing, you can end
it by pressing the EXE key to return to the menu.

This program has done two of the main computing actions, process
and output, for you. The only input has been of the numbers in the
program itself, and we can’t alter any of these numbers in the program
without altering the program by editing. This requires you to be
certain that the program is retained in the memory. If you record
another program with the same filename as an earlier one, OPL
assumes that you are replacing the old program with a newer version,
and it deletes the older version. Now try writing a program of the
arithmetical type for yourself, and see how OPL carries out the
calculations and displays the answers.

29



Psion LZ: A Dabhand Guide

All of this is useful, but it's not always handy to get just a set of
answers on the screen, especially if you have forgotten what the
questions were. OPL allows you a way of printing anything that you
like on the screen, exactly as you type it, by the use of what is called a
‘string’. The listing below (‘pro1x3’) illustrates this principle.

prolx3:

print"2+2=";2+2
print"2.5*3.5=";2,5%*3.5
print"9.4-2.2=";9.4-2.2
print"18.48/2.2=";18.48/2.2
get

In each line, some of the typing is enclosed between quotes (inverted
commas) and some is not. You must not forget to enter the semicolon
(;) which separates the two sections of each line, because if you do so
you will get an error message, and the cursor will be placed at the first
character following the missing semicolon. Can you see how very
differently the computer has treated the instructions? Whatever was
enclosed between quotes has been printed exactly as you typed it.
Whatever was not between quotes is worked out, so that the first line,
for example, gives the unsurprising result:

242=4
There’s nothing automatic about this. If you edit the first line to read:

PRINT "2+2=";5*1.5

then you'll get the daft reply, when you Run this, of 242=7.5. The
computer does as it's told by the program, and that’s what you told it
to do. Only a loony would believe that computers could take over the
world! The important point about this example is that it shows how to
make a program display what is being done. As before, the command
word PRINT has to be used to make things appear on the screen, but by
using quotes, we can make the computer print whatever we want, not
just the results of some arithmetic. Try making the computer print
some answers for yourself, using this form of program.

30

Setting Up

With all of this accumulated wisdom behind us, we can now start to
look at some other printing actions. PRINT, as far as OPL is concerned,
always means print on to the screen. For activating a paper printer
(hard copy, it's called), there’s a separate form of instruction, LPRINT,
that is not so straightforward to use because it requires the Comms
Link to be present and correctly set up, see Appendix A. The Comms
Link is also needed if you want a program listing on paper. These
instructions are not useful to you unless you have a printer connected.
If you use them without a printer connected and switched on, the
computer will report the absence of the connection and you will have
to press the SPACE key in order to return to normal service.

Now try the program listed below. When you Run this program, the
words appear on three separate lines. This is because the instruction
PRINT doesn’t just mean ‘print on the screen’. It also means ‘take a new
line’, and start at the left-hand side. You will also find, of course, that
when you have more than four PRINT lines like this, then when the
words on the screen reach the bottom line, all the lines move up, and
the top line disappears, scrolling out of sight. You can make the
scrolled lines reappear by using the arrow keys.

prolxd:
print"QPL - "
print"the way "
print"to program"
get

In this example (‘prolx4’), the words have been placed between quote
marks, and they have appeared on the screen just as we typed them,
but with no quotemarks showing. This, then, is the sort of
programming that is needed when you want to display instructions or
other messages on the screen, The real problem, as you'll see when
you try it, is of getting the messages to look really neat. Nothing looks
worse than printing which has words split, with half of a word on one
line and the rest on the next line. If you type a long line following
PRINT” then you will see the screen shift sideways so that the new
words do not disappear beyond the edge, and you can use the left or
right arrow keys to see the whole of the printing when you come to

31



Psion LZ: A Dabhand Guide

run the program. It will not, however, appear like this when the
program runs unless you use one of the other methods of printing to
the screen such as VIEW or DISP (see later).

Even at this stage, it's possible to make your printing look neat with
some care, by not going over the edge of the screen. Suppose, for

example, that you have some long paragraph that you want to type in,

using several long PRINT lines. Type the PRINT” part, then type the
words that you want, and continue typing without touching the EXE
key until the screen starts shifting sideways. If you are in the middle of
a word, then erase this word by using the key, type the closing
quotemark, and then press EXE. Start another line now, using PRINT”,
and then type the rest of the message in the same way. This way, you
will never split a word across a line end. Try it!

Now the action of selecting a new line for each PRINT isn’t always
convenient, and we can change the action by using various
punctuation marks and instruction words that we call ‘print
modifiers’. Edit the program that you have just tried, adding the
semicolons in the first and second lines as shown below in ‘pro1x5":

prolx5:

print"COPL - ";
print"the way ";
print"to program"
get

The effect of a semicolon following the last quotemark in a line is to
prevent the next piece of printing from starting on a new line at the left-
hand side. When you run this program, all of the words appear in one
line. It would have been a lot easier just to have one line of program
that read:

PRINT"QOPL - the way to program"
to do this, but there are times when you have to use the semicolon to
force two different print items on to the same line. We'll look at that

sort of thing later in program examples. Meantime, look also at how I
have placed a space between the last letter and the last quote mark in

32

Setting Up

the first two lines. The semicolon doesn’t just order the computer to
prevent a new line being taken, it also forces it to place one item right
up against another. If you left no spaces, the phrase would be printed
as ‘OPL - the wayto program’. Try removing the spaces, and see for
yourself.

Rows and Columns

Neat printing is a matter of arranging your words and numbers into
rows and columns, so we'll take a closer look at this particular art now.
To start with, we know already that the instruction PRINT will cause a
new line to be selected, so the action of the listing below (‘prolxé’)
should not come as too much of a surprise.

prolxé6:

cls

print"This is OPL"
print

print"working for you"
get

The first line contains a novelty, though, in the form of a new
instruction that, strictly speaking, we don’t need yet. The instruction
CLS clears the screen, and makes the printing start at the top left-hand
corner of the screen. This is done automatically in any case when you
Run, but the CLS instruction will be useful later when we want to wipe
clean a screen by an instruction in the program. Another point about
the program is that the PRINT instruction, with nothing to be printed,
will cause a blank line to be taken. There are other ways of doing this,
as we'll see, but as a simple way of creating a space, it's very handy.
Now try for yourself a program which will put words on different
lines like this. Remember that you have only four lines to play with on
the screen.

prolx7:

at 10,1
print"x"
at 9,2
print"xxx"
at 8,3

33



Psion LZ: A Dabhand Guide

print"xxxxx"
at 7,4
pPrint"xxxxxxx"
get

The program listed above (‘pro1x7’) deals with something that is often
very useful, arranging text or numbers into columns. This uses the

keyword AT, which positions the cursor at some specified part of the'

screen and is in this example followed by a PRINT line (which must be
a separate line). AT needs to be followed by two numbers. Of these,
the first number is a ‘column number’, measuring position across the
screen from the left-hand side, and the second number is a ‘line
number’, measuring the lines down from the top of the screen. The
column numbers range from 1 (left-hand side) to 20 (right-hand side)
and the line numbers range from 1 (top of screen) to 4 (bottom of
screen), with the numbers separated by a comma. Using AT followed
by a PRINT line allows you to print at any place on the screen, and

allows you very considerable control over printing that was lacking in -

a lot of versions of OPL in the past. If you try to place anything with AT
that would be off the screen then off the screen it goes, and you will
see nothing to help you find out what has happened. You must
therefore take some care to use the correct range of numbers along
with AT.

Oh, yes, how did I position the letter ‘X" at the centre of the first line in
the program? It’s simple enough, because if the position numbers are 1
to 20, then 10 is as close as we can get to the centre. If you want a word
printed centred you have to count up the number of characters that it
contains. By characters, I mean letters, digits, spaces and punctuation
marks. You then subtract this from 22 (you might find 21 more
suitable) and divide the result by two. Take the whole number part of
the answer — forget about any half left over - and this is then the
correct number to use as the first figure in AT. Later, you'll see that we
can use letters in place of numbers in the AT and other instructions.
This allows us to centre words without all the fuss of counting letters -
but that’s more advanced programming than we should be thinking
about at this point. Right now, you might like to think about how you

Setting Up

could display the words ‘MY ADDRESS’ centred on the screen, with
your address shown neatly printed lower down the screen. When you
have achieved this, you will have learned quite a lot about the use of
AT.

Procedures

What in any other variety of BASIC is called a program is referred to as
a ‘procedure’ in OPL. The reasons for this will be much clearer later on,
but one aspect of a procedure is that it can be ‘called’ by using its
name. In other words, if you put inside a program (a procedure) the
name of another procedure, then the second procedure will be run
when that line is executed. Suppose, for example, that we take any two
of the sample programs that have been used in this Chapter. Each of
them is a procedure, and in OPL terms this means that each of them
starts with a filename followed by a colon on the first line - there must
be nothing else on the first line. To show just what this business of
procedures implies, alter the procedure for program ‘pro1x5:’ so that it
reads:

prolx5S:

print"QOPL - ";
print"the way ";
print"to program"
get

prolx7:
get

assuming that these examples have been recorded using the filenames
of ‘prolx5’ and ‘prolx7’ respectively. Remember that the first five lines
in this example will already exist, and what follows it is the name of
another procedure (you must type in the colon this time) and another
GET line.

Now when you Translate this and Run it, the action of the first
procedure will be carried out, and when you press any key (because of
the first GET) then you will see the action of the second procedure
which will show on the screen because of the second GET. All



Psion LZ: A Dabhand Guide

programs in OPL are of this procedure type, allowing one procedure to
run another. Later we shall see the immense advantages of using this
method when we look at program design and how data can be passed
from one procedure to another.

2 : Variables

Assignment

So far, our computing has been confined to printing numbers and
words on the screen, using program lines containing the PRINT
keyword. That's covered two of the main aims of computing,
processing and output, but we have to look now at some of the actions
that go on before anything is printed. One of these is called
assignment. Take a look at the program listed below (‘pro2x1):

pro2xl:

local x

x=23

print"2#*x is ";2*x
®x=5

print"x is now ";x
print"2+x ig "“;2+x
pause 100

Type it in, run it, and contrast what you see on the screen with what
appears in the program. The first line that is printed gives the text on
the screen:

2*x is 46

but the numbers 23 and 46 don’t appear in the PRINT line of this
procedure. This is because of the way we have used the letter X as a
kind of code for the number 23. The official name for this type of code
is a ‘variable name’. As with keywords, the case of variable names is
unimportant, so you can enter ‘x” or ‘X’ in your program with the same
results. Again, like keywords, they are shown in this text in upper
case.

37



Psion LZ: A Dabhand Guide

Because of the way that OPL works with procedures, we have to start
by specifying that X is ‘local’, which means that various values can be
used for X within this procedure. If you do not use this LOCAL X line,
then the procedure will Translate without trouble, but will not run
correctly. The reason is that when you do not use LOCAL X, the
procedure expects to find X being used in another procedure which
has been running and which has called this one. We have not
encountered this so far because none of the sample procedures in
Chapter One required this type of use.

The second line of the procedure (ignoring the name line) assigns the
variable name X, giving it the value of 23. This means that wherever
we use X, not enclosed by quotes, the computer will operate with the
number 23 instead. Since X is a single character and 23 has two digits,
that’s a saving of space. It would have been an even greater saving if
we had assigned X differently, perhaps as X=2174.3256, for example.
The second line then proves that X is taken to be 23, because wherever
X appears, not between quotes, 23 is printed, and the ‘expression’ 2*X
is printed as 46. We're not stuck with X as representing 23 for ever,
though. The next line assigns X as being five, and the following lines
prove that this change has been made.

That's why we call X a ‘variable’ - we can vary whatever it is we want
it to represent. Until we do change it, though, X stays assigned. This
very useful way to handle numbers in code form can use a ‘name’
which must start with a letter. You can add to that letter other letters
or digits, but not spaces or punctuation marks, so that N, name, and
N504 are all names that you can use for number variables, and each
can be assigned to a different number.

Just to make it even more useful, you can use similar ‘names’ to
represent words and phrases also. The difference is that you have to
add a dollar sign ($) to the variable name. If N is a variable name for a
number, then N$ (pronounced en-string or en-dollar) is a variable
name for a word or phrase. The computer treats these two, N and N§,
as being entirely separate and different. The name for a number must
not end with the $ sign.

38

Variables

There are, as you might expect, some rules to observe. You can pick
names which use more than one letter or digit, up to eight characters
long - but remember that each character takes up space in the memory
and might have to be typed many times over. If you can work with
single-letter variables you will make the effort and the strain on the
memory both considerably less. You must avoid using any name for a
variable that is the name of a keyword, like AT, and this is another
good reason for using single-letter ‘names’.

Types of Numbers

Most versions of BASIC force you to decide what type of numbers you
want to represent with each variable name, and OPL follows the same
pattern. The two main types of numbers are ‘integer’ and ‘float’ (or
‘floating point’). An integer number is a whole number, which can be
positive or negative, but which contains no fractions. The range of an
integer in OPL is between -32768 and +32767. A float, by contrast, can
be any number in ordinary form, whole or fractional, positive or
negative, and with a huge range of values whose limits you are most
unlikely to encounter.

The reason for using different types of number variables is that
integers can be stored in less space, dealt with more quickly, and are
always precise. The way that a float is stored in the machine can allow
errors to build up, and this can cause difficulties in financial programs,
among others.

An assignment to an ordinary variable, such as X, COST, Z2 and so on,
will be carried out automatically to a float type of number. For
example, if you make the assignment ITEM=32, then the word ITEM is
used as a variable and the number 32 is assigned as a float, meaning
that it is stored in float form, even though it is an integer number. If,
on the other hand, you assigned SUBTOT%=1452, then this name would
be used as a integer variable for the integer number, because of the use
of the % sign at the end of the name. OPL uses two distinguishing signs
following variable names, $ for strings, as we saw earlier and % for
integers.

39



Psion LZ: A Dabhand Guide

Keeping to numbers for the moment, the use of a variable name
unmarked by % will ensure that the variable uses the float type of
storage. This means that numbers will appear correct to twelve figures
so that 100.0/3 is printed as 33.3333333333 and 10000.0/3 is printed as
3333.33333333, a total of twelve figures for each.

¢ One point you need to be careful about is a PRINT line which
results in a number being printed, because there is nothing in a
PRINT line that determines whether a number is an integer or
float. The rule is that if a number contains no decimal point and
is within the size limits, it is an integer, and this can result in
some odd results. For example, using:

PRINT 100/3

gives the result ‘33’ because this is the nearest integer, neglecting
fractions. Using:

PRINT 100.0/3

or alternatively:

PRINT 100/3.0

where either number has a decimal point, will give the float
result of 33.3333333333 as you would expect.

The lack of precision of a float is usually concealed because when a
number is printed, it can be rounded up or down to its correct value.
An integer variable, by contrast, is always perfectly precise, but its
range is limited and no fractions are permitted.

Use integers for as many of your number applications as possible,
because they take up less memory space and can be processed quicker.
Floats should be reserved for essential data that contains fractions or
needs a large range of numbers.

Working with Number Variables

There’s nothing particularly difficult or new about working with

40

Variables

number variables, though the idea might be a novelty to you if you
never encountered algebra at school. Using variable names, you can
type instructions like X*V, meaning that whatever number is assigned
to variable X will be multiplied by the number that has been assigned
to variable V. The value of being able to carry out arithmetic on
variables in this way is that it allows you to work with any numbers.
For example, if you put into a program the instruction statement PRINT
40.5* 0.15, then this will print 6.075 every time you run the program.

If, however, your instruction is PRINT X*V, then what gets printed
depends on what has been assigned to X and to V, and these
assignments can be changed during the program. You can, for
example, make the computer carry out this action many times, using a
whole list of numbers. Another option that we’ll look at shortly, is to
make the computer assign a variable with a number that you type
while the program is running. Once again, this will be a number that
was not put into the program at the time when the program was
written, and that’s the whole point about programming. You can even
make the program read hundreds of numbers from memory and work
on these.

* One point to watch is that you cannot use as variable names the
names of arithmetical calculator routines, like SUM, MAX or MIN.
Such names are rejected when you Translate the program.

Simple arithmetic with variables, then, is typed much as you type
simple arithmetic with numbers, using the signs ‘+, =/, *" and ‘/’.
This means that you can have lines containing items such as:

S=F+X
PROFIT=GROSS - EXPENSES
VAT=price*rate

or:

METRES=MILLS/1000.0

The result of such pieces of arithmetic can be printed or, as shown
here, assigned to some variable that will be used later. One

41



Psion LZ: A Dabhand Guide

complication occurs, however, when the same variable name is used
twice. For example, what do we mean by the assignment: S=5+ITEM?
By the ordinary rules of numbers, this would just be silly, and its
meaning hinges on a different use of the ‘=’ sign. Used in this way, the
‘=" sign means ‘becomes’, so that the action of $=S+ITEM means that

you add together the value of S and of ITEM, and make this the new

value of S.

No language other than BASIC uses the ‘=’ sign for both purposes in
this way, and it’s something that you just have to get used to.
Wherever the same variable name appears on each side of the ‘=" sign,
then the ‘=’ sign means ‘becomes’, so that statements like A=A*B or
C=C-X or D=D/5 are all examples of this use of the equality sign.

String Section

The following listing (‘pro2x2’) illustrates ‘string variables’, meaning
the use of variable names for words and phrases.

pro2x2:

local 15(20),£$(20),ws(20)
cls

1$="0PL Basic"

f$="The excellent"
w§="program language"
print £5,18,w$

print"This uses ";1$
print £$,w$;" in action"
get

This causes some complications that are not present when we use
numbers. When you work with number variables, the computer can
set aside a fixed amount of memory for each number, two units (bytes)
for an integer, and four for a floating point number.

A string, however, can consist of any number of characters, and
though some varieties of BASIC can cope with this, OPL demands that
the maximum number of characters should be specified for each string
variable. In the LOCAL line for this example, then, each string variable
is declared as having up to 20 characters, using the form:

42

Variables

L$(20),F$(20) WS (20)

to show the names and lengths. In this example, 20 has been taken as a
convenient length since this is the maximum number of characters that
will fit across the screen width.

The next three lines carry out the assignment operations, and the other
lines show how these variable names can be used. Notice that you can
mix a variable name, which doesn’t need quotes around it, with
ordinary text, which must be surrounded by quotes.

You have to be careful when you mix these two, because otherwise it’s
easy to run words together. Note in the last three lines how spaces
have been left between words this time, using the comma in place of a
semicolon. Another way of tacking strings together, incidentally, is to
use a + sign to connect the variable names, such as:

PRINT L$+F$+W$

but if you do this you must either have suitable spaces in the strings,
or alter the command to read:

PRINT LS+™ "+F$+" "4WS$S

with the space represented by pressing the space key between the
quote marks.-

Strings and Things

Because the name of a string variable is marked by the use of the $
sign, a variable like A$ is not confused with a number variable like A.
We can, in fact, use both in the same program knowing that the
computer at least will not be confused.

pro2x3:

local a,b,a$(2),bs(2)
a=2

b=3

ag="2"

b§="3"

print a,b



Psion LZ: A Dabhand Guide

print a$,b$

print"a*b is",a*b
print"a$*b$ is impossible”
get

The listing above (‘pro2x3’) illustrates that the difference is a bit more
than skin deep, though. The first two lines assign number variables A
and B, and string variables A$ and B$. When these variables are
printed further on, you can’t tell the difference between A and A$ or
between B and B$. The difference appears, however, when the
computer attempts to carry out arithmetic. It can multiply two number
variables because numbers can be multiplied, but it can’t multiply
string variables, whether these represent numbers or not. You can
multiply 2 by 3, but you can’t multiply “2 LABURNUM WAY” by “3
ACACIA AVENUE”. The computer therefore refuses to carry out
multiplication, division or any other arithmetic operation on strings —
the exception being ‘addition’ (more about that later).

Attempting to do a forbidden operation causes a message:

ERROR TYPE MISMATCH

to be delivered when you try to Translate, meaning that you have tried
to do on strings what can only be done on numbers — you are trying to
use the wrong type of variable. Later on, we'll see that there are
operations that we can carry out on strings that we can’t carry out on
numbers, and attempts to do these operations on numbers will also
cause an error message. The difference is an important one. The
computer stores numbers in a way that is quite different from the way
it stores strings.

The different methods are intended to make the use of arithmetic
simple for number variables (for the computer, that is), and to make
other operations simple for strings. Let’s face it, it’s only a machine!

There is one operation that looks like arithmetic that can be carried out
on strings. It uses the + sign, but it isn’t addition in the sense of adding
numbers; it is called ‘concatenation’. Concatenation is a very useful
way of obtaining strings which otherwise would need rather a lot of

Variables

typing, and of forcing one string to be tacked on to the end of the
other. Take a look at the following listing (‘pro2x4’):

pro2x4:
local a$(5),bs(6),c%(9)

a$=“***t*"
bS="%%%%%%"
c$="0PL Basic"
print b$+b$+b$
print a$+c$+a$s
print b$+b$+bs
get

This defines strings A$ and B$ as characters which can be used as
‘frames’ around a title. The title is defined as ‘OPL Basic’. The top and
bottom of the frame are produced by concatenating three copies of BS.
In addition, the sides of the frame and the title are printed as a
concatenated string: A$+C$+AS.

Getting Some In

So far, everything that has been printed on the screen by a program
has had to be placed in the program before it is Run, by direct
assignment. Our programs have just consisted of a bit of processing
and some output, but with no input apart from whatever was placed
in the program. We don’t have to be stuck with restrictions like this,
however, because the computer allows us a way of putting
information, either numbers or names, into a program while it is
running. A step of this type is called an ‘input’ and the OPL instruction
word that is used to cause this to happen is also INPUT.

The following listing illustrates this with a program that prints your
age. Now I don’t know your age, so I can’t put it into the program
beforehand.

Pro2x5s:

local b%,v%
print"Year of birth"
input bf%
print"Current year"
input v%

45



Psion LZ: A Dabhand Guide

print"You are",
print y%-b%,
print"this year"
get

What happens when you run this program (‘pro2x5’) is that the words:

Year of birth

are printed on the screen, and below this you will see a dash ‘~; the
Organiser has no question mark on its keyboard and we’ll look at how
to get such symbols later. The question mark is used for other
purposes, as we'll see later. The computer is now waiting for you to
type something, and then press EXE. Until the EXE key is pressed, the
program will hang up waiting for you. If you're honest, you will type
your year of birth and then press EXE. When you press EXE, your year
of birth is assigned to the variable B%. The program can then continue,
so that the question ‘Current year’ is then asked. Once again, you
answer by typing the year and pressing EXE, and the reply is assigned
to variable Y%. In fact, this year could be obtained from the
computer’s built-in calendar, but that’s a refinement that will have to
wait for now. :

The program then prints the age you will be on your birthday this
year, assuming that you answered correctly. You could, of course,
have answered 1392 or 1745 or anything else that you pleased for
either of these years. The computer has no way of knowing in this
program that either of these is not your true year of birth or the current
year. Don’t listen to the nutters who tell you that computers know
everything!

Now that you can type something that can be assigned to a variable,
and then use the variable later, you can use all three of the main
computing actions. Could you now design a program that asked for
your annual income, and assigned it, and then asked for your taxcode,
and assigned that? Could you then arrange it so that it then cleared the
screen, and printed your income after tax (knowing that the amount of
tax is ‘taxrate*(income-10*taxcode)’)? You now know all of the
commands that are needed.

46

Variables

INPUT can be used with an integer variable as illustrated here, with a
floating point variable, or with a string variable (so that you can enter
names, for example). The only difference on the form of the command
is the type of variable name that follows it. There are, however,
differences in the way that the computer accepts an input. If the INPUT
command uses a string variable, like INPUT A$, then anything that you
type is acceptable. If a number variable is used, like INPUT A or INPUT
A%, then what you type must be a number, and for INPUT A% it has to
be a number that is an integer in the correct range of -32768 to +32767.
If you enter characters when you are asked for a number, the computer
will print a question mark so that you can try again with a sensible
entry this time.

* When you have an INPUT line that calls for a number, the
number-keys of the Organiser will provide numbers with no
need to press the SHIFT button.

Single Key Reply

So far, we have been putting in replies with the use of INPUT, which
means typing and then pressing EXE. You could use this for single-
letter replies (Y or N), and this has the advantage of giving you time
for second thoughts, because you can delete what you have typed and
type a new letter before you press EXE.

For snappier replies, however, there is an alternative in the form of
GET$. GET$ is an instruction that carries out a check of the keyboard to
find if a key is pressed and repeats this until a key is pressed — so far
we have used the similar instruction GET as a way of making a
program wait for a key to be pressed. The syntax of GET$ is always of
the form: K$=GET$, so that the string variable K$ carries whatever has
been assigned to it by GET$, and if you are looking for a single-key
reply then you should make K$ a one-character variable, using a line
such as:

LOCAL K$ (1)

at the start of the procedure. The following listing (‘pro2x6’) shows

47



Psion LZ: A Dabhand Guide

such a GET$ being used for a Y or N reply — though in this simple
example, any key could be pressed - we'll look later at how a reply can
be tested.

pro2x6:

local k$(1)
print"reply y or n"
k$=get$
print"Thats",

print k$§

get

The GET$ instruction will produce a string quantity when any key is
pressed, so we must assign GET$ to a string variable such as K$. In this
way, when a key is pressed, the quantity that it represents will be
assigned to K$, and we can then test this string as we want.

Operators

An operator is a symbol for a fundamental mathematical operation. If
that definition looks intimidating, don’t worry, because the main
operators that you are likely to use are the familiar signs *, */*, '+' and
‘~ which carry out the fundamental operations of multiply, divide,
add and subtract. Each of these is an operator that requires two
numbers to work on, and in some books you will find them called
‘binary operators’. The numbers (or in some cases strings) that
operators work on are called operands. The operators of OPL are of
four kinds, classed as arithmetic, string, relational and logical. The first
group is composed of the four symbols that we are familiar with, plus
the exponentiation action of raising a number to a power (using **),
and the % sign (more about that later). The only string operator is the
+, which will concatenate strings (join them together). In addition to
these familiar tasks, you can use the ‘+’ and ‘-’ signs as ‘unary’
operators, meaning that they can be used on a single number. You can,
for example, write things like +2.54 or 3.6, and these are examples of
making use of the ‘+’ and "~ operators in a unary way.

The relational (or comparison) operators are the set of signs that show
relationships, rather than producing some answer. The main three

48

Variables

signs in the group are ‘=’ (equal to), ‘<’ (less than) and ‘>’ (greater
than), which compare the size of numbers and the ASCII codes of string
characters. These signs can be combined, so that ‘>=" means greater
than or equal to, ‘<=" means less than or equal to, and ‘<>' means not
equal to. These are read left to right, so that ‘A>B’ means ‘A greater
than B’, and ‘X<Y’ means ‘X less than Y’.

Finally in this list, the logic operators are the words AND, OR and NOT,
sometimes called the Boolean operators in honour of the mathematical
genius George Boole whose work laid the foundations of computing
science in the 1840's. The action of a logic operator is to return TRUE or
FALSE when it is used to test a relationship. The NOT operator is unary,
and it gives a TRUE result if what it precedes is NOT TRUE. The machine
expresses TRUE as the number -1 and FALSE as 0. If you are not
accustomed to this, it can look very confusing, and a few examples will
help. The secret is to work in terms of TRUE and FALSE only, and to
start with any term that is enclosed in brackets. For example, what do
you expect from the line:

PRINT NOT (2>1)

when this runs? The answer is worked out by looking first at 2>1,
which is TRUE. NOT TRUE is FALSE, so the answer must be the code for
FALSE, which is 0. Try another one:

PRINT NOT("B">"A")

Note - the quotes are important.

When we compare strings, alphabetical order is treated like numerical
order, so that “B”> “A” is TRUE, and NOT TRUE gives FALSE, 0. By the
same token, NOT (“A"”> “B”) gives ~1, TRUE. Using PRINT NOT(0) will
give -1, since NOT FALSE must be TRUE, and equally obviously,
NOT(-1) gives 0. If your nerves are up to it, try PRINT NOT(7) and see if
you can explain the result. If it’s baffling, please turn to Appendix B. In
the normal course of programming, you should not have to be worried
too much by this kind of thing, but it’s as well to know, because it can
sometimes make easy meat of what appears to be a difficult piece of
programming,.

49



Psion LZ: A Dabhand Guide

The other logic operators, AND and OR each need two quantities to
work on. These quantities can be number comparisons or string
comparisons, and the important point once again is that each side of
the AND or OR word should be something that can be resolved to TRUE
or FALSE. For example, if we have:

PRINT (7>3)AND(5>2)

then we can expect the result —-1. Why? Working out the items in the
brackets we have 7>3 is TRUE and 5>2 is TRUE, so TRUE AND TRUE =
TRUE. The Law of AND is that the result is TRUE only if the items that
are connected are also both TRUE. If one item is FALSE, the result is also
FALSE. On that basis, then you would expect the result of:

PRINT (5>6)AND(7>4)

to be 0, as it is because one term is FALSE. The OR operator will give
TRUE if any one item is TRUE, no matter whether the other is TRUE or
FALSE. Only if both items are FALSE will the result of OR be FALSE.
Table 2.1 summarises the actions of AND and OR. Remember that you
would normally be using these operators with variable names rather
than numbers or letters.

A B AANDB
False False False
False True False
True False False
True True True

A B AORB
False False False
False True True
True False True
True True True

Table 2.1. The actions of the AND and OR comparisons on two items which
can be true or false.

50

Variables

Expressions

An expression is a set of operators and operands that provides a
number or a string result. A very simple expression is 1+2, but we
usually reserve the term for lines that make use of variable names, and
in which more than one operation may be carried out. A familiar pair
of expressions are the incrementing expression, X=X+1 and the
decrementing expression X=X-1. Remember that the ‘=’ sign in BASIC
is used here to mean ‘becomes’ rather than ‘equals’. The expression
X=X+1 therefore means that the value of X is increased by one, and
X=X-1 means that the value of X is decreased by one.

In general, the use of more complicated expressions is something that
often proves baffling to a computer user who has no experience of
mathematics. This needn’t be so, because expressions, like anything
else in computing, follow precise rules, and once you know what the
rules are it's not difficult to apply them. The most important rules
concern ‘precedence’ of operators, and once you know about
precedence, it's not difficult to find what an expression does. Making
up an expression for yourself is another matter, and only practice can
help there.

Top priority: ** (exponentiation, such as 5**2=25)
NOT (coded as -)
*and /
+and -
=> << >=<=
Lowest priority: AND OR

Table 2.2. Precedence of operators. If you have more than one arithmetic
operation in a line, the actions will take place in this order. Actions of equal
precedence will be executed in a left-to-right order.

Table 2.2 shows the order of precedence. What this means is that if you
have more than one operation in an expression, the operation(s) with
higher precedence are carried out first. If there is no clear precedence,
then the order in the expression is simply left to right. For example, if
you have the expression:

51



Psion LZ: A Dabhand Guide

PRINT 5+44*3-6/2

what do you expect? If everything obeyed a left-to-right order only,
the result would be got from 5+4=9, 9*3=27, 27-6=21 and 21/2=10.5
(Note that the result printed would be 10 — the fraction would be lost

because the expression is an integer expression). It's not like this,

though. Because multiplication and division have higher precedence
than addition and subtraction, the 4*3=12 and the 6/2=3 are worked
out first. Having done that, all that is left is of equal precedence, and
we get 5+12=17 and 17-3=14, which is the answer that the computer
will give you.

Remember that in a program, all or most of the quantities would be
variables, and to find the numerical answer you would have to find
what numbers were assigned to the variables at the time of evaluating
the expression. You might, for example, be working with something
like Y=K+B*X**N. The X**N action is carried out first, since the raise-to-
a-power action (exponentiation) has highest precedence, and then the
result of this is multiplied by B.

Finally, the value of K is added. Precedence rules, O.K.?

One important point to remember is that brackets take precedence
over everything else. For example, if you have an expression which
boils down to 5*(4+3), then this is not the same as 5%4+3 (which is 23),
it actually gives 35, because whatever is inside the brackets is worked
out first, giving seven in this case.

When there are several sets of nested brackets, meaning brackets
inside other brackets, then whatever is innermost has highest
precedence. For example:

5*(4+(8-6/2))

gives 45, because the innermost bracket gives five, adding this to the
four in the next layer of brackets gives nine, and the result is 5*9.

For some reason, however, it all looks much more fearsome when used
with variables, particularly when there are actions like NUM$ and VAL
(see later) involved as well.

52

Variables

Translating Formulae

The earliest computer programming languages were for scientific and
engineering use, and translating formulae so that the computer could
deal with them was a very important feature.

It was so important, in fact, that one of the main languages in the early
days was called FORTRAN, an abbreviation of FORmula TRANslation.
FORTRAN is still used, and the BASIC language which is used by all
microcomputers is based very considerably on the ideas and methods
of FORTRAN.

For this reason, BASIC is a language not to be despised if your needs or
interests are in programming of this type. A lot of languages that are
more highly regarded either by academics or for business use are
inferior to BASIC when it comes to working with formulae, and also,
incidentally, for dealing with strings and disc files. OPL is definitely
one of the forms of BASIC that retains this tradition of dealing well
with formulae.

If you haven’t had some practice, however, it's not always
straightforward to convert a formula written in a reference book into
the form of an OPL expression. For one thing, you have to remember
that the order in which the terms of the formula are written will not
usually be the order in which you want them evaluated, so that you
must either change the order or make use of brackets to obtain the
correct expression.

Examples help here, but one person’s example is another’s confusion,
so please bear with me if the formulae that you want to use are not
shown here. Remember that you don’t have to derive the formulae for
yourself for most purposes, you simply take them from a reference
book. You need to know, of course, what variable values have to be
supplied, and what the formula does, and you also need to know any
limitations, but in general this is all. You get into a different league
when you start to generate your own formulae!

We'll take as a first example the formula for the volume of a sector of a
sphere, shown in Figure 2.1(a). Now, like many formulae, this uses no

53



Psion LZ: A Dabhand Guide

sign for multiplication. Quantities that are printed together are
intended to be multiplied, so that the formula requires you to multiply
two by pi by the value of r(squared) by h, and then divide the answer
by three. Note that this uses pi, whose value is supplied as this
variable name in OPL.

a) Formula is: v=2nr’h/3
b) In OPL: v=r**2*2*PI*h/3

Figure 2.1. Converting a formula (a) into the form of OPL BASIC (b).

Now in the expression, there is one power taken, and this action will
have precedence no matter where we put it. It makes sense, in any
case, to start with this item, getting the value of ‘v’ squared. Suppose
that we use variable names ‘R’ and ‘H’, then the expression that is
shown in Figure 2.1(b) is the OPL expression for evaluating the
formula. The variable V is used for volume, and the main point to note
is that we have to insert the multiplication signs **" and the division
sign ‘/’ that OPL demands.

Because all the operations apart from finding the square are of equal
precedence, we can write the rest of the expression in left-to-right
order, and be reasonably confident. In all cases, however, if you are in
any doubt, try a few examples with simple numbers and check that
you get what you expect. In this example, the answers will always
have more places of decimals that you would really want to use, and
we’ll look at how to round them off later.

Variables

The real problems come when the formula is not in the form that you
want. If you have a smattering of algebra (ie, if you are over the age of
40) then you may be able to rearrange the formula to suit. Old
textbooks of elementary algebra (like the Hall & Knight of blessed
memory) deal with this important topic much better than modern
textbooks which seem to require you to discover it all for yourself, or
assume that no-one needs such things any more.

Functions

There are many quantities that we need to calculate which cannot be
dealt with by an operator, or even by a reasonably simple expression.
Quantities such as trigonometrical ratios, square roots, hexadecimal
equivalents and so on are dealt with by the use of functions. A
function of a number is a quantity that is obtained by the use of
various actions on the number. The number (or more likely, variable)
is called the ‘argument’ of the function, and for many functions has to
be enclosed in brackets.

In the computing sense, functions can also include actions on strings,
and the main thing that they have in common is that the function uses
a statement word (not a symbol, as an operator uses) and that it needs
an operand or argument, which can be a number or a string depending
on the type of function. The main number functions of OPL are listed in
Table 2.3, along with their effects.

Of this list, the trigonometric functions merit particular attention,
because they cause a lot of trouble to programmers who are working
with trigonometrical formulae for surveying and similar calculations.
The functions that are most used are SIN, COS and TAN, all of which are
provided in OPL. What you need to watch, however, is that each of
these functions needs an argument which is an angle in radians.

Now if you are working with angles in degrees you will need to
convert from degrees to radians, and there is a conversion function
built into OPL. By using an angle D in degrees, you can convert by
using R=RAD(D), so that R will hold the angle converted into radians.

55



Psion LZ: A Dabhand Guide

The reverse problem occurs when you need to use the inverse
trigonometric functions, such as ACOS, ASIN and ATAN. Each of these
finds the angle (in radians) whose cosine, sine or tangent (respectively)
has the value which is used as the argument. This is called an inverse
function because it finds the angle rather than the function of an angle.
ATAN is a function which you don’t need all that often. A lot of work
with trigonometry calls for the inverse SIN (ASIN) and inverse COS
(ACOS) rather than the inverse TAN (ATAN). The angle that you obtain
when you use these functions is in radians, and can be converted to
degrees by using the DEG function. This can be combined with the
trigonometrical function itself, such as in:

D=DEG (ATAN (1))

The other function which can cause problems is the LOG function.
When you use a statement such as A=LOG(X) then what is assigned to
A is the familiar base 10 logarithm — OPL is one of the select number of
varieties of BASIC that uses LOG to mean the basel0 logarithm. The
natural log of X makes use of LN, which agrees with the use of LOG
and LN in science and engineering. Schools nowadays don’t teach
about logarithms, because subject advisors and teachers don’t seem to
know to what extent logarithms and logarithmic functions are used in
engineering and scientific work — it’s yet another reason for firms
setting their own entrance exams.

Function Application

ABS(x) Strips negative sign from floating-point number x
ACOS(x) Gives angle whose cosine is x

ASIN(x) Gives angle whose sine is x

ATAN(x) Gives angle whose tangent is x

COS(x) Gives value of cosine of angle x radians

DEG(x) Converts angle x radians into degrees

EXP(x) Calculates e*, used as inverse for LN

FIX$(x$) Converts number to string of specified format
FLT(x) Converts integer to floating point number

GEN$ Convert number to string for any number.
HEX$(x) Converts integer into string of hexadecimal digits

Variables

IABS(x) Strips negative sign from integer number x
INT(x) Rounds to nearest lower whole number,

returns an integer
INTF(x) Rounds as INT, but returns a floating-point number
LN(x) Gives natural logarithm of a number x
LOG(x) Gives logarithm to base 10 of x
NUMS$ Gives string form of floating-point number
PI Gives value of &
RAD(x) Convert from x degrees to radians
RANDOMIZE Set sequence of ‘random’ numbers
RND(x) Gives ‘random’ fraction
SCI$ Convert number to string, using scientific format
SIN(x) Gives value of sine of angle x in radians
SQR(x) Gives square root of x. x must be positive
TAN(x) Returns value of tangent of angle x in radians

Table 2.3. Most functions act on a number or string, which is referred to as
the argument of the function; a few functions require more than one
argument. Most functions require the argument(s) to be placed between
brackels. In the following list, x is used for a number argument (usually
floating point, but in some cases an integer) and x$ for a string.

pro2x7:
local b,c,a
print"first side",

input b

print "second side",
input ¢

print "angle between",
input a

print"Area is",
print .5*b*c*sin(rad(a))
get

The listing above (‘pro2x7’) gives an example of the use of these
trigonometrical functions to find the area of a triangle which is not
right-angled, a common surveying application. The angle is entered in
degrees and is converted to radians as part of the expression. The

57



Psion LZ: A Dabhand Guide

printed statements are rather curt, and if you wanted this program to
be used by someone with little experience you would have to provide
more lines of print for each entry, detailing the units of measurements
and so on. The formula assumes that the units are consistent, so that if
the length is measured in metres and the angle in degrees, then the
area will be in units of square metres.

Another function that you often need for a surprising number of
applications is RND, which generates a ‘pseudo-random’” number.
Games, prize draws, and many statistical actions (like the Monte-Carlo
method) require numbers that are taken at random. Now a computer
works to fixed rules, and any number that is obtained from a formula
cannot be totally random, but by using a sufficiently complicated
formula you can get something that is almost a random number. To be
more precise, it’s a random fraction with a value which will always be
more than zero and less than one, and the following program
illustrates how this fraction is obtained and how it can be multiplied
by numbers to get random number sequences in whatever range you
want. You should get different fractions and a different whole number
each time you use this.

pro2x8:

print"Look at some fractions"
print"taken at random."
pause 20

print rnd

print rnd

print rnd

print rnd

pause 40

cls

print"Now a number "
print"between one and 100"
print int (100*rnd)+1

get

The important point in this example (‘pro2x8’) is to see how a random
fraction, which can be anything from 0.00000000001 to 0.99999999999
can be converted to a range of whole numbers. Suppose we want
numbers in the range 1 to 100. Now multiplying the extremes of the

58

Variables

fractional range by 100 gives 0.000000001 to 99.999999999. Taking the
integer part of this with INT gives the range 0 to 99. Adding one gives
the range 1 to 100. The method of converting then is to multiply RND
by your upper range number, take the INT, and then add one.

Print Appearance

One problem that the example above makes obvious is that it can be
very awkward to get lines of print looking neat and well-arranged in
their 20-character sets. OPL provides some help in the shape of DISP
and VIEW, as illustrated in the following short listing (‘pro2x9'):

pro2x9:

local a%,a$(80)

a$="This is a demonstration of an
alternative to the PRINT command."
a%=disp (1, a$)

cls

a%=view (2, a$)

Either of these commands allows a string to be displayed scrolling in
one line from right to left, and controlled by the cursor keys, so that
the right and left cursor keys can be used to halt, reverse or accelerate
the speed of the scrolling. For DISP only, the up and down cursor keys
put the start of the message on to the screen line. The message keeps
scrolling, wrapping around on itself so as to scroll continuously, until
a key other than a cursor key is pressed.

The differences between DISP and VIEW are not particularly important
at this point, but VIEW has several advantages for use with information
strings like this (DISP is designed for reading files). To start with, VIEW
allows you to specify the line number on the screen (one,. two, three or
four), using this as the number in the brackets along with the string
variable name. The other feature is that the variable A% (you can, of
course, use any variable name you want) will contain a number-code
for the key that you press to stop the scrolling of the display, so that
the GET action is combined with a PRINT action and with scrolling in
this useful command.

59



Psion LZ: A Dabhand Guide

Precision of Numbers

One problem that turns up time and time again in computer work is
the precision of numbers. For some reason, computers are always
thought of as being associated with mathematics, and people believe
that computers can carry out arithmetic much more precisely than
your average £3.50 pocket calculator. Don’t you believe it! This is
something that causes more trouble than anything else in computing
(apart from printing a pound sign), and it arises because of the way
that computers store numbers in the memory. OPL allows for numbers
to be stored in two main ways, called integer and float. Up to now, we
have made use of numbers without saying much about them, but now
the time has come to explain more, starting with integers.

An integer means a whole number, but for the purposes of OPL, it has
a more restricted meaning of a whole number whose range is from
-32768 to +32767 only. Now a number in this range can be stored in
two of the memory units that we call bytes, and its value will always
be precise.

If you want to specify a variable as an integer, you use the % sign to
mark it out, such as A% or SM%. Because an integer requires only two
bytes for storage, the use of integers will increase the running-speed of
a program, and we shall see shortly that this can be turned to a
considerable advantage.

If you can perform all arithmetic with integers, it will be fast and, with
one exception, precise. The exception is division, because an integer
number cannot be assigned with a fraction. If, for example, you assign
A%=B%/C%, with B%=5 and C%=3, then A% will be 1, not
1.66666666667, which is what you would get from PRINT 5.0/3.0.

You should use integer variables when:

1)  The number range that you are likely to work with is
comparatively small and does not require fractions.

2) The number variable is used many times, particularly for a
constant value.

60

Variables

3)  The number variable is used in expressions, particularly in loops
(see Chapter Three).

By keeping to these rules, you can make your programs run faster and
take up less of the memory. When you first start to program in OPL,
these points aren’t exactly the most pressing ones for you, but later
you'll need to know and make use of these points. From now on, if it's
going to be an advantage to work with integers, the examples in this
book will show them in use.

Floating Point Numbers

When you need to work with floats or reals (short for floating point or
real numbers), meaning numbers which can be positive or negative,
whole or fractional, and with a much greater range of size, precision
then becomes a problem.

In a lot of applications, we use real numbers in standard form, which
means that a number such as 52400 would be written as 5.24E4,
meaning 5.24 x 104. When this is done, numbers are often
approximated, so that the number 52417 might also be written as
5.24E4 on the grounds that the extra 27 represented only a small
fraction of the whole number. To put it another way, the precision of
the number is sacrificed so that it can be written with only three digits
before the E sign. This part of the number is called the mantissa, and
the part which follows the E is called the exponent.

When a real number is stored in the computer, it is also stored in
mantissa-exponent form, but with both in binary numbers, using the
digits 1’ and ‘0" only. The mantissa is a binary fraction, stored in seven
bytes, and the exponent is a single byte integer. This is a compact way
of storing numbers, but it does mean that there will always be some
approximations.

pro2x10:
local a,b,c
a=1.,0/11
b=7.0/11
c=6.0/11

61



Psion LZ: A Dabhand Guide

print"a is ";a
print"b is ";b
print"c is ";c
get

print"b-c is ";b-c
get

The listing above (‘pro2x10’) illustrates this, using assignments to three
variables. Running this shows that the two numbers, A and B-C do
not give precisely the same result on the screen, appearing in the form
9.0909090909091 for A and 9.090909090909 for B-C, so that if we were
to test for these numbers being equal the test would fail because they
are not precisely equal. The answer is to use another form of
comparison. Instead of comparing, for example A with B-C in this
example, we could compare the quantities:

INT (1000*A)

and:

INT(1000* (B-C))

which would be precisely equal. This is because the INT action
removes the tail end of the number which causes the problems. For
example, 1000*A is 9090.9090909091, and INT(1000*A) is 9090, which is
the same figure as will be obtained from INT(1000*(B-C)).

The sensible use of the INT form of expression, therefore, can solve a
lot of problems that otherwise can result from the use of floats. If, for
example, you are writing an accounts program in which two quantities
are expected to balance, then rounding will be essential. This is
because you will be working with floating-point numbers which
include two places of decimals, and because of storage errors, there
may be small fractional errors. If you are displaying your results only,
these fractions are of no importance and do not appear, but they can
cause any comparison to be incorrect. Two columns of figures, for
example, which should give the same amount, will not necessarily
give a true answer unless you use the adjusted amounts such as
INT(100*X) when comparisons have to be made. If the number that you

62

Variables

want to round off would be too large to be an integer (larger than
32767) then you can use the INTF functions which works like INT to
remove fractions but gives a floating point number. Chapter Three
deals with the comparison actions.

Number Notes

Working with numbers implies the input of numbers from the
keyboard, processing, and the display of numbers on the screen. As far
as input is concerned, the conventional method is the statement of the
form INPUT A (float) or INPUT A% (integer). Using INPUT A%, you will
get no error message if the number that you enter for an integer is a
small fraction, such as 24.5, but you will not be allowed to enter an
integer of incorrect range.

The number that is assigned to the variable must be an integer so that
if you enter 22.56 for INPUT A%, then A% will hold the number 22, the
integer part of the number. If you try to enter an out-of-range numbers
such as 32769, then you will get the question mark reminder and be
given the chance to try another entry. Using a number variable,
incidentally, does not mean that you cannot enter any letters, because
you can always enter a number in a form such as 1E3 (equal to 1000)
when the entry is to a float or to an integer.

One principle that is employed by a lot of programmers is to use a
string for entry, such as INPUT A$. No entry, unless it's a string of
excessive length, will be rejected, and it’s then easy to check what has
been entered and issue messages about errors. It's also easy to convert
a string form of number into number form, using VAL, dealt with later.

Finally, OPL permits you to use a set of ten variable names which need
not be declared in advance, and which can be used outside an OPL
procedure. These are the calculator memory stores ‘m0’ to ‘m9'. If your
OPL program makes use of these variable names they need not appear
in any LOCAL or GLOBAL line, and the values that are assigned to these
variables are retained after the OPL procedure is completed. You can
then switch to the calculator and make use of the values stored as m0
to m9 in any further calculations you want to make.



Psion LZ: A Dabhand Guide

3 : Getting Repetitive H Z

One of the activities for which a computer is particularly well suited is
repeating a set of instructions over and over again and every computer
language is equipped with commands that will cause repetition. OPL is
no exception to this rule, and it is equipped with more of these ‘repeat’
commands than is usual for other varieties of BASIC. We'll start with
one of the simplest of these ‘repeater’ actions, and one which we
should never have to use, GOTO.

GOTO means exactly what you would expect it to mean - go to another
point in the program. Normally a program is carried out by executing
the instructions in the order in which the lines are placed in the
memory. Using GOTO can break this arrangement, so that a line or a
set of lines will be carried out in the ‘wrong’ order, or carried out over
and over again. The command word GOTO can be used along with a
‘label name’, and you can make the name one that reminds you of
what you want to do. When a label is used, the point to which you
want GOTO to take you is marked by a statement such as loopit::, a
word followed by two colons, which has to be placed on a preceding
line of its own.

The trouble with this sort of thing is that it's possible to create in this
way a repeating ‘loop’ that can be very difficult to break. The manual
tells you that pressing the ON/CLEAR button followed by ‘QY’ (for Quit)
will break a loop, but this particular type of loop is very difficult to
break in this way if it contains an INPUT step.

If you cannot break a loop by use of these buttons you will have to
break it by disconnecting the battery of the Organiser, which means
that you lose all of your stored data. The way out of the problem is to
make every loop contain a test which can be used to end the loop. Such
a test can be formed by using the instruction keyword IF.



Psion LZ: A Dabhand Guide

IF has to be followed by a condition. You might use conditions like
IFN%=20, or IF NM$="LASTONE" for this purpose. After the condition,
you can use as many lines as you want for actions that will be carried
out when the condition is TRUE, and this set of lines ends with the
keyword ENDIF. When the condition is tested and found to be FALSE,
only the program lines following ENDIF will be executed; the lines
between IF and ENDIF are for use when the condition is TRUE.

pro3xl:

loopit::

print"Looping fills screen"
if key<>0

stop

endif

goto loopit::

The program listing above (‘pto3x1’) shows an example of a very
simple loop, which is tested by checking if any key has been pressed.
This is done using the function KEY, used in the form of a test: IF
KEY<>(, meaning that the test is TRUE if any key has been pressed. The
function KEY can also be used in the form N=KEY which makes N=0 if
no key has been pressed, but assigns the number code (called ASCII
code, see later) for the key if a key has been pressed. In this example,
the only action line is the one which prints a phrase on the screen. The
first line is labelled by using Loopit::, and the sixth line uses GOTO
Loopit:: to force the computer to repeat the action endlessly. The test
follows the print action, and if TRUE causes the STOP action which will
end the looping. If no key is pressed, the looping continues for as long
as power is supplied.

Now GOTO is a method of creating loops that we prefer not to use if
anything else is available, mainly because we have to be so careful
about how to get out of the loop. The main use of GOTO is not in
forming loops, but in allowing a program to jump over a step or set of
steps — and in OPL there are always other options, so that you should
never need to use GOTO.

GOTO allows you to get to any point that you care to mark with a label
name. Because of this, it's all too easy to get a GOTO wrong by placing

66

Getting Repetitive

the name at the wrong position. This is more likely when you are
working with a long program, and you can’t see on the screen the line
that you want to go to. Chapter Six shows one of the few applications
of GOTO to form a loop when errors are being detected.

The type of loop that we demonstrated above can be created in a very
different way in OPL, using one of the several ‘structured’ loops that
OPL provides. Structured means that the loop has its start and its end
marked, so that you can see at a glance which instructions are being
repeated, even if the loop is a long one. We'll concentrate on
structured loop methods from now on, and show next an example that
uses a structured alternative to GOTO, and with rather more action.

pro3x2:

local n%

n%=0

do

print"OPL No.",n%
n%=n%+1

until n%=20

In the above example (‘pro3x2’) the first line declares the variable N%
and the second line assigns a starting number of zero. This is not
strictly necessary, because any local number variable will have a zero
value at the start of a procedure, but it's a good habit to acquire in case
you need a starting value that is not zero. This is then followed by the
reserved word DO. The principle of the DO type of loop is that the
word DO marks the start of the loop, and every instruction that you
put between DO and the word UNTIL that marks the end of the loop
will be repeated. The number of repetitions is controlled by placing a
condition following UNTIL; this condition can be a test of a number or
string variable, or something like KEY which tests for a key being
pressed.

In this example, the test is for the number variable N% reaching the
value of 20. A very important part of the program is the line that
increases the value of N% by unity (‘incrementing’ N%). If this is
omitted, N% can never reach 20, and the test always fails, allowing the
loop to run indefinitely. To stop such a runaway loop, hold down the

67



Psion LZ: A Dabhand Guide

ON/CLEAR key until you hear the buzzer sound, then release this key
and press the Q key - you have to move from ON/CLEAR to Q very
quickly.

The loop will cause the screen to print the words:

OPL No.

and the number that is held in variable N%, each time the computer
goes through the actions of the loop. We call this ‘each pass through
the loop’. This continues until N% reaches the value of 20, since this
satisfies the UNTIL test.

The important point about this type of loop is that the number of
repetitions is strictly fixed by the UNTIL test — providing that any
number variable that you use in the test is correctly incremented or
decremented in each loop. You don’t have to confine this action to
single loops either. The following listing (‘pro3x3’) shows an example
of what we call ‘nested loops’, meaning that one loop is contained
completely inside another one.

pro3x3:
local n%, 3%
do
print"Count is",
print n%
3%=0
do
I%=3%+1
until 3%>=1000
n%=n%+1
until n%>=10

When loops are nested in this way, we can describe the loops as being
inner and outer. The outer loop starts in the second line, using variable
N% which goes from 0 to 10 in value. The next line is part of this outer
loop, printing the value that the counter variable N% has reached. We
then create another complete loop. This must make use of a different
variable name, and it must start and finish again before the end of the
outer loop. We have used variable J% this time, and we have ensured

Getting Repetitive

that the value of J% starts at zero each time. Otherwise, on the second
and subsequent times that the computer passed through the outer
loop, it would find the value of J% to be >=1000 already and so the
inner loop would only run once. In this inner loop, there is nothing
placed between the DO and the UNTIL parts to be carried out.

All that this loop does, then, is to waste time, making sure that there is
some measurable time between the actions in the main loop. The last
action of the main loop is incrementing the value of N%, and the
UNTIL N% >=10 is placed in the final line. Note that the inner loop has
been indented by a couple of spaces. This is not necessary but it does
make the program easier to follow.

The overall effect, then, is to show a count-up on the screen, slowly
enough for you to see the changes. Note that both tests have been
formed using the test ‘>=’ so that the test will fail if the number is
either greater than or equal to the specified number. This avoids the
possibility of a test failing because somehow a value has been skipped.
Such a test is particularly important for floating point numbers when
exact equality cannot be guaranteed.

Even at this stage it’s possible to see how useful a DO...UNTIL loop
used with a number variable can be, but there’s more to come. To start
with, the loops that we have looked at so far count upwards,
incrementing the number variable. We don’t always want this, and we
can make the number variable be incremented in other steps, or
decremented in value, in the course of the loop. We could, for
example, use a line like:

N%=N%+2

which would cause the values of N to change in the sequence 0, 2, 4, 6,
8, and so on, or we could use a starting value of N%=12 and a loop
step such as:

N%=N%-3

to make the values descend in the order 12, 9, 6, 3, 0, and to negative
values if we have not tested for N%<=0.

69



Psion LZ: A Dabhand Guide

pro3x4:

local n%

n%=10

do

print n%, "seconds - "
print"and counting"
pause 20

cls

n¥=n%-1

until n%<=0
print"Blastoff”
pause 20

The listing above (‘pro3x4’) illustrates a loop which has a step of -1, so
that the count is downwards. Variable N% starts with a value of 10,
and is decremented on each pass through the loop. Once again there is
a time delay so that the countdown takes place at a civilised speed.
This is a particularly useful way of slowing the count down, and it
uses the instruction PAUSE 20. PAUSE must be followed by a number,
and a count of 20 gives a one second delay, with other times
proportional so that PAUSE 40 gives two seconds and so on.

Loops and Decisions

It's time to see loops being used rather than just being demonstrated.
A simple application is in totalling numbers. The action that we want
is that we enter numbers and the computer keeps a running total,
adding each number to the total of the numbers so far. In such a
program, we would not normally want to total a fixed set of numbers,
and it would be more convenient if we could just stop the action by
signalling to the computer in some way, perhaps by entering a value
like 0 or 999.

A value like this is called a ‘terminator’, something that is obviously
not one of the normal entries that we would use, but just a signal. For a
number-totalling program, a terminator of zero is very convenient,
because if it gets added to the total it won’t make any difference. We
detect the terminator by using a conditional test of the type that we
have used previously.

70

Getting Repetitive

Now if all of that sounds rather complicated, take a look at this simple
listing (‘pro3x5’):

pro3xs:

local tot,n,m$(90)

m$="The program will total numbers

for you until you enter 0. Press

any key to start."

view(1l,m$)

do

input n

tot=tot+n

until n=0

print"Total:",tot

get

The variables are declared, including a long string that contains
instructions, and which will be displayed in scrolling form using VIEW.
The instructions appear first, and we rely on the LOCAL declaration to
make the variable TOT equal to zero before the loop starts. Each time
you type a number, then, in response to the request, the number that
you have entered is added to the total, and the UNTIL test checks for
the entered number N being zero.

Floating point numbers have been used so that you can total any
numbers. If N is not zero, the loop is repeated, adding another number
to the total, but when N=0 is found (after adding it, which is one of the
reasons why 0 is used and not 999) then the loop ends, and the value
of TOT is displayed. If you press EXE without having typed a number,
then the program takes this as an oversight on your part, and the
request for a number to be entered is repeated.

I said earlier that tests for exact equality should not be carried out on
floating point nunbers since they aren’t necessarily held precisely.
However, this program disobeys that rule. The reason why it is
acceptable to disobey it in this example is because the number being
tested is zero which can be held exactly. Therefore, you can be sure
that assigning zero to a variable and then testing the variable to see if it
is equal to zero will always give a TRUE result.

7



Psion LZ: A Dabhand Guide

Besides being used in UNTIL tests, we saw earlier that conditional tests
also follow the IF keyword. Table 3.1 illustrates the type of tests that
you can perform using IF.

IF A=B A exactly equal to B

IF A>B A greater than B

IF A<B A less than B

IF A>=B A greater then B or equal to B
IF A<=B A less than B or equal to B

IF A<>B A not equal to B

Table 3.1. The mathematical signs that are used with IF for comparing
numbers and number variables.

These use the mathematical signs for convenience, but remember that
all of these signs will have a meaning for strings as well, as we have
seen. All of these tests will be used in lines that will take the general
form:

IF (test or tests)
Action to be done
ENDIF

and the action that is placed between IF and ENDIF will be carried out
if, and only if, the test is TRUE.

What ELSE?

IF...ENDIF forms a test which can be very useful in programs. There’s
another extension to IF...ENDIF, however. You can use the word ELSE
to carry out a different sort of action. An example makes this a lot
clearer, so take a look at this listing (‘pro3x6’):

pro3x6:

local a$(l),n%

print” Heads or Tails"
pause 40

cls

do

print"Use e to end"
a$=get$

72

Getting Repetitive

n¥=rnd*2+1
if n%=1
print"Heads"
else
print"Tails"
endif
pause 20
until lower$(a$)="e"

This is a simple heads-or-tails gamble, with no scoring. The early lines
set things up as usual, then we start at the DO loop of repeated actions
that holds the main instructions. You are asked to press a key for the H
or T choice (the key you press has no effect on this choice), or use E to
end the program. The RND line is the important gambling statement
which picks a number that can be one or two (see Chapter Two) which
is suitable for a heads or tails choice.

Note that the use of the word INT is not necessary — conversion to an
integer will automatically be performed because an integer variable is
being assigned to. The test is made following the RND step, so that if
N% is one, the word ‘HEADS' is printed, and if it’s not one, then ‘TAILS’
is printed. Notice that the test uses LOWER$(A$), which allows you to
press ‘e’ or ‘E’ with the same effect. In this example, ELSE is being used
to choose the alternative action. Normally in an IF test, the alternative
is whether the next line(s) is/are run. For example, if you have the
following:

IF X=4
¥=100
ENDIF

the test will be made, and its result will be either TRUE or FALSE. If the
result is TRUE (X is four), then the next line is run and program assigns
the value of 100 to Y. If the result of the test is FALSE (X is not four),
then the next line is ignored, and the assignment is not made. The
program moves straight on to the line following ENDIF. Using ELSE
allows you to put another option into the test. You can also use the
combined word ELSEIF, meaning that the first test has failed and you
are now forming another test, as distinct from an alternative action.



Psion LZ: A Dabhand Guide

pro3x7:
local a$(l),n%,sc%, tr%
print" Heads or Tails"
pause 40
cls
do
print"Press h or t"
print"Use e to end”
a$=get$
n%=rnd*2+1
if as="e"
stop
elseilf n%=1 and a$="h"
sc¥=sc%+1l
elseif n%=2 and a$="t"
sc%=sc%+l
endif
tr¥=tr¥+l
print sc%,"out of",tr%
pause 20
until a$="e"

The listing above (‘pro3x7’) shows this in use, with scoring added to
the previous example using SC% for the score of correct guesses and
TR% for the number of tries. This time, you have to enter h or t to
guess heads or tails, or use e to end the game. No LOWERS test has
been used this time, so that you have to be sure that the keyboard is set
up to make the letter keys give lower case letters. If you wanted to be
sure, you could add to the program before the loop starts the line:

KYSTAT 2

which forces the keyboard to deliver lower case letters for a letter key.
This is how programs such as CALC change the keyboard into its
numeric input form (using the equivalent of KYSTAT 4). For more on
KYSTAT, see Chapter Six.

The test lines start with the main IF, which tests for the e key being
pressed and cause an immediate STOP if this is so. The next line is an
ELSEIF which tests for the combination of N%=1 (heads) and A$="h"
(your guess of heads). If this is true, then SC% is incremented to bump

74

Getting Repetitive

up the score. If it’s not true, then another ELSEIF causes another test, for
N%=2 (tails) and A$="t" (your guess of tails), another combination
that calls for the score to be incremented. If neither of these tests is
true, then the lines following ENDIF are executed straight away and the
score lines are missed out.

The number of tries, TR%, is always incremented whatever the results
of the tests, as it lies outside of the IF structure. The procedure then
prints out the number of successes and the number of tries for you.
This print out is not done if the e key has been pressed, because STOP
completely stops the procedure.

Sometimes you find that you need to break out of a DO...UNTIL loop
before a count has been completed. You might, for example, have a
number of inputs in the course of a loop that allows 1000 inputs, and
want to end after only 20. Another common option is to have a title
followed by a time delay loop that waits for 25 seconds, but which
allows you to break out by pressing any key if you don’t want to wait
that long. This can be done by a test that includes logic AND or OR,
using the form of test that was illustrated above. In either example,
you can form a test like:

UNTIL K%=1000 OR KEY<>0

so that the loop will be terminated either by the count or by pressing
any key. If you control timing by means of PAUSE, then you can also
modify this time delay to break out by pressing any key. The method
is to use a negative number after the PAUSE statement, instead of a
positive one, so that PAUSE -100 would wait for five seconds or until
any key was pressed, as compared to PAUSE 100 would force you to
wait for the full five seconds.

One point of warning here is that when you use PAUSE in this way, the
code for the key that was pressed remains stored and can affect any
GET line that you might have later. When you use PAUSE with a
negative number, always make the following instruction KEY, which
will dispose of the stored code without any effect on the program.

There is one instruction that can cause a loop to end at any point, not

75



Psion LZ: A Dabhand Guide

just the start or the end. The instruction BREAK will always end a loop,
and it can be put as part of an IF test, anywhere in the middle of the
loop. BREAK can be used in the DO...UNTIL type of loop, or in the
WHILE...ENDWH type (details follow), and its use is illustrated in later
examples.

WHILE and ENDWH

The DO...UNTIL type of loop makes its test at the end of the loop when
the UNTIL instruction is reached. This means that everything inside the
loop will be executed at least once, because you can’t get to the end of
the loop until you have carried out all the instructions between DO and
UNTIL. OPL offers you, as an alternative, a very different type of loop,
the WHILE...ENDWH. This can sometimes make it much easier to
program a loop, and is essential if you want to make sure that the loop
instructions do not run at all if the test gives a FALSE result. The
principle is that you start your loop with a condition, then you have as
many lines as you like of what has to be done in the loop, and finally,
the word ENDWH (meaning END WHile) to mark the end of the loop.

Yes, an example would certainly help, so cast an eye on this listing
(‘pro3x8’):

pro3x8:

local t,]

=1

while j<>0
print"Number",
input 3J

t=t+]
print"Total:", t
endwh
print™END"
pause =40

This is another version of an old friend, the number-totalling program.
This time we have J=1 near the start. This is needed because of the way
that a WHILE...ENDWH loop works, as we'll see, The start of the loop is
at WHILE J<>0. What this means is that the loop will be repeated for as

76

Getting Repetitive

long as ] is not zero. When the program starts, however, you will not
have input any number | by this stage. This is why a ‘dummy’ value
for ] has to be assigned before the loop starts. Without this J=1 step, the
program would finish as soon as it got to the WHILE test. This is
something that you have to be careful about, particularly if you have
used any of the older versions of BASIC that did not have the
WHILE...ENDWH (or WHILE...WEND) loop. If you find, when you run a
program, that a WHILE...ENDWH loop appears not to run, then this is
the first thing to suspect.

The steps in the loop are familiar, and we needn’t go over them again.
The important one to note is the ENDWH line. This marks the end of
the loop, and will automatically send the loop back to the WHILE test.
There’s no need for IF tests, and you can even nest WHILE...ENDWH
loops inside each other. The only snag is in remembering that the test
in a WHILE...ENDWH loop is made right at the start of the loop. You
must have a value for whatever is being tested at this stage, or the loop
simply won’t run at all.

pro3x9:

local n%

print"Please enter number"

print"-range 1 to 5 only"

input n%

while n%<l or n%>5
print"Out of range"
print"l to 5 only"
input n%

endwh

print"You picked",n%

get

The above listing (‘pro3x9’) shows yet another use for the
WHILE...ENDWH loop. In this case, it acts as a ‘mugtrap’. A mugtrap
(polite name - data validator) is a piece of program that tests whatever
you have entered. If what you have entered is unacceptable, like a
number in the wrong range, then the mugtrap refuses to accept the
entry, shows by a message on the screen why the entry is
unacceptable, and gives you another chance to enter something better.



Psion LZ: A Dabhand Guide

Mugtraps are very important in programs where a piece of incorrect
entry might stop a program with an error message.

In this example, then, you are invited to enter numbers in the range
one to five. If the number that you enter is in this range, all is well, but
if not (try it!), then the WHILE...ENDWH loop swings into action. This
prints an error message of your own, and gives you another chance to
get it right.

That’s the essence of a good mugtrap, and the WHILE...ENDWH loop is
ideal for forming such traps. Note, despite the emphasis on numbers
in some examples, that the WHILE... ENDWH loop is just as much at
home with strings. You can have lines like:

WHILE Name$ <>"X"

to allow you to keep entering names into a list, or:

WHILE UPPERS (AN$)<>"Y¥'" AND UPPERS (ANS) <>"N"

to make a mugtrap for a ‘Y’ or ‘N’ answer. Don’t forget the use of
UPPER$ or LOWERS$ to avoid having to test for y and n as well as for Y
and N, and BREAK to end a loop in midstream.

Last Pass

When you start writing programs for yourself, designing a loop often
appears to be difficult. It's not, but you need to approach it with some
method. The best way is to write down what the loop conditions are to
start with. What conditions do you want at the start of the loop, for
example? If the loop must run at least once, then a DO...UNTIL should
be used. If the loop must not run unless conditions are correct at the
start, then use the WHILE...ENDWH loop.

Once again, though, you have to look for the starting conditions.
Remember that the WHILE...ENDWH loop makes a test right at the start
of the loop, and so you have to ensure that whatever is tested at the
start has a suitable value, this is not the case with the DO...UNTIL type.
If you might need to make a test that would end a loop mid-way, you
can use the IF test along with BREAK.

78

Getting Repetitive

Next, you have to think of what is to be done in each pass of the loop.
This might be some string action, or some number action, or a bit of
both. The really important bit, however, is to decide what will end the
loop. You might want to end a counting loop before the true end of the
count, in which case please heed the words of wisdom earlier in this
Chapter.

The really important thing here is that if you are using a count in the
loop, you must remember to increment (or decrement) the counting
variable, otherwise the loop can never end, and you will be faced with
a lot of stabbing at the ON/CLEAR and Q keys.

Finally, it’s possible to get yourself tied up in testing a loop. Suppose,
for example, you have designed a loop that calls for the entry of 5000
names, and you want to check that it ends correctly when you enter an
“X", or after 5000 entries. Needless to say, you don’t check it by going
through all 5000 entries, a much easier way is to alter the count
number to something smaller, like five, for testing.

String Functions

If numbers turn you on, then what we have done so far in this Chapter
will be of use, but string functions are in many ways more interesting.
What makes them that way is that the really eyecatching and
fascinating actions that the computer can carry out are so often done
using string functions. What’s a string function, then? As far as we are
concerned, a string function is any action that we can carry out with
strings. That definition doesn’t exactly help you, I know, so let’s go
into more detail.

A string, as far as OPL is concerned, is a collection of characters which
is represented by a string variable, that is a name which ends with the
dollar sign. You can pack practically as many characters as you are
likely to need into a OPL string — a maximum of 255 characters per
string is allowed, which is a longer string than most of us will ever
want to use.

Each string variable that you use, however, must have its maximum



Psion LZ: A Dabhand Guide

number of characters declared in advance, and for a 20-character
screen width, it doesn’t make sense to have long strings for anything
you are going to print unless you are using the VIEW type of display
instruction.

You can assign characters to a string variable by using the equality
sign. When you assign in this way, you need to use quotes around the
characters. You can also assign using INPUT, along with a string
variable name, when no quotes are needed.

Like other computers, OPL stores its strings in a way that is very
different from the way that is used to store numbers, making use of
what is called ASCII code. The letters stand for American Standard
Code for Information Interchange, and the ASCII (pronounced Askey)
code is one that is used by most computers. '

Figure 3.1 on the following page shows a printout of the ASCII code
numbers and the characters that they produce on a Star LC24-10 dot-
matrix printer, with the printer in its U.S. character set.

Each character is represented by a number, and the range of numbers
is from 32 (the space) to 127. On the printer, 127 produces nothing, but
on the Organiser screen, you'll see a small left-pointing arrow appear.

Now all number variables are represented in a different type of
coding, one that uses the same number of byte codes no matter
whether the value of the variable is large or small. There’s one type of
number coding for integers, and another for ordinary floats. Because a
string consists of a set of number codes in the memory of the
computer, one code for each character, we can do things with strings
that we cannot do with numbers. We can, for example, easily find how
many characters are in a string. We can select some characters from a
string, or we can change them or insert others. Actions such as these
are the actions that we call ‘string functions’.

No.

32
33
34
35
36
37
38
38
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

Figure 3.1. The ASCII character set for the range 32 to 127, as printed by a

Char No.

(space) 80
l 81
" 82
# 83
$ 84
1 a5
& 86
d 87
( a8
) 89
- 90
+ 91
’ 92
- 93
" 94
/ 95
(1] 96
1 97
F | 98
3 99
4 100
5 101
6 102
7 103
8 104
9 105
H 106
H 107
< 108
= 109
? 110
7 111
e 112
A 113
B 114
c 115
D 116
E 117
F 118
G 119
) | 120
I 121
J 122
K 123
L 124
| 125
N 126
0 127
P

Getting Repetitive

=

,—-/.-.u-eu:c-::l-lmuao'ug

I cmuMXC<cradavosl—~rur-rameontrp

STAR LC24/10. This printer can also print characters for the ranges 1 to 31

and 128 to 255.

81



Psion LZ: A Dabhand Guide

LEN in Action

One of these string function operations that I mentioned was finding
out how many characters are contained in a string. Since a string can
contain up to 255 characters, an automatic method of counting them is
rather useful, and LEN is that method. LEN has to be followed by the
name of the string variable, within brackets, and the result of using
LEN is always an integer number so that we can print it or assign it to
an integer variable. You don’t need to put a space between the ‘N’ of
LEN and the opening bracket.

pro3x10:

local n%,s$(30)
s$="0PL in action"
n%=(21-len(s$)) /2
at n%,2

print s$

get

The listing above (‘pro3x10’) shows a simple example of LEN in use.
This program uses LEN as part of a routine which will print a string
called S$ centred on a line. This is an extremely useful routine to use in
your own programs, because its use can save you a lot of tedious
counting when you write your programs. The principle is to use LEN
to find out how many characters are present in the string S$. This
number is subtracted from 21, and the result is then divided by two. If
the number of characters in the string is an even number, then the .5,
produced by the division by two, will be ignored because N% is an
integer variable.

You can, incidentally, use 21 or 22 as the characters per line.
Whichever one you use, you will find that words are reasonably well
centred — 22 works better with phrases which have an even number of
characters, and 21 works better with phrases which have an odd
number of characters. Yes, you could program for that sort of
variation, but one thing at a time, please!

We can use a routine of this type to centre anything that has the name
S$. In Chapter Four, we'll be looking at the idea of using procedures

82

Getting Repetitive

more fully, allowing you to type the set of instructions (for centring a
title, for example) just once, and then use them for any string that you
like.

NUMS and VAL

You know by now that there are some operations that you can carry
out on numbers but not on strings, and some which you can carry out
on strings but not on numbers. This might be inconvenient, but as it
happens, we can convert from one form into another quite easily. This
allows us to perform arithmetic on a number that has been in string
form, and also to use string functions on a number that was formerly
only in number form. Take a look at this listing (“pro3x11°):

pro3xll:

local v%,n$(6),v$(2)
n$="22.5"

v=2

print n$,"*",vE, "is",vi*val (n$§)
pause 40

vé=num$ (v%, 1)

print len(v$),"character(s)"
pause 40

print"but adding gives”,
print n$+vs

get

To start with, we declare two strings and a number variable, and then
make N$ a number in string form, and V% a number in integer
number form. The program then shows how we can carry out
arithmetic with N§. By typing VAL(NS$) in place of N$ alone, the
number value of N$ is used in the calculation, and the correct result is
obtained. Next, number V% is transformed into a string, V§, by the use
of NUM$(V%). As the line using LEN shows, a single-digit number
becomes a one-character string.

The last line is there to remind you of what can happen if you forget
about VAL and try to add two strings! Note that NUMS$ requires you to
state how many characters are needed for the number as well as
supplying the variable that holds the number. In addition, it always



Psion LZ: A Dabhand Guide

delivers the string form of an integer, even if a floating point number
has been converted.

NUMS also ‘fields” a number. This means that it prints a number in a
given space, set either to the left or the right of the space, according to
the value of the second number within the brackets. Three other
functions, FIX$, GEN$ and SCI$ also carry out this form of conversion,
as the following listing (‘pro3x12’) illustrates.

pro3xl2:

local v

v=714.639

print "fixs$"
print fix$(v,1,8)
print fix$(v,1,-8)
pause 40

print "gen$"
print gen$ (v, 6)
print gen$ (v,-6)
pause 40

print "scis"
print sci$ (v, 2, 9)
print sci$(v,2,-6)
get

FIX$ allows you to state the number of decimal places and the total
length of the string, using the form:

FIX$(number, decimal places, total length).

If the total length number is negative, then the result will be placed to
the right of the ‘field’, the space that is allocated for it. GEN$ will fit a
number into the specified field space, using the most appropriate
representation so that as precise a form of the number as possible will
be used. The result can therefore appear as integer, float or scientific
form according to what will fit best. When SCI$ is used, the result is
always in scientific notation and as the example shows for SCI$, if the
field space is inadequate, only a string of asterisks will appear.

VAL is used mainlj;/ when you have had an INPUT to a string variable,
and after testing for items like the length of the string. The string

Getting Repetitive

variable is then converted to number form using VAL so as to be tested
for correct range. If necessary, a number that will eventually be an
integer can be converted into float form for its range test. This will
ensure that the program is not stopped by an error message if the size
of the number is outside the range of an integer. If testing shows that
the number is acceptable, it can be changed into integer form by a
statement such as X%=X. The use of NUM$ and its associates is less
common, but can be applied when numbers have to be placed in
strings with a suitable format.

A Slice in Time

The next group of string operations that we’re going to look at are
called slicing operations. The result of slicing a string is another string,
a piece copied from the longer string. String slicing is a way of finding
what letters or other characters are present at different places in a
string. You can also use it to select different parts of a string so that
these can be printed or reassigned.

pro3xl3:

local a$(8),bs(4),c$(6),ds (11)
a$="Oriental"

b$="Post"

c$="Likely"

D$="programming"

print left$(a$,1)+left$(bs,1)+lefts(cs,1),
print left$(ds,7)

get

All of that might not sound terribly interesting, so take a look at the
listing above (‘pro3x13'). A set of strings are assigned in the first four
lines, using variable names A$ to D$. What's printed at the end is a
phrase which uses letters that have been selected from the left-hand
sides of some of the strings.

Now how did this happen? The instruction LEFT$ means ‘copy part of
a string starting at the left-hand side’. LEFT$ has to be followed by two
quantities, within brackets and separated by a comma. The first of
these is the variable name for the string that we want to slice, A$ in the

85



Psion LZ: A Dabhand Guide

first of the lines. The second is the number of characters that you want
to slice (copy, in fact) from the left-hand side. The effect of LEFT$(A$,1)
is therefore to copy the first character from “Oriental”, giving ‘O’. The
next string slice is obtained by using LEFT$(B$,1) which takes ‘P’ from
‘Post’, and so on.

The first three string slices are tacked together (concatenated), and the
last slice is printed separately, using a comma to make a space. The
result of all this is the phrase which is printed on the screen.

String slicing isn’t confined to copying a selected piece of the left-hand
side of a string. We can also take a copy of characters from the right-
hand side of a string. This particular facility isn’t used quite so much
as the LEFT$ one, but it's useful none the less. The listing below
(‘pro3x14’) illustrates the use of this instruction to avoid having to type
a word over again.

pro3xl4:

local a$(9)
a$="0PL magic"
print"Its all",
print right$(as,s)
get

There are, of course, more serious uses that this. You can, for example,
extract the last four figures from a string of numbers like 010-242-7016.
I said a string of numbers deliberately, because something like this has
to be stored as a string variable rather than as a number. If you try to
assign this to a number variable, you'll get a silly answer. Why?
Because when you type N = 010-242-7016 then the computer assumes
that you want to subtract 242 from 10 and 7016 from that result. The
value for N is -7248, which is not exactly what you had in mind! If you
use N$="010-242-7016" then all is well.

There’s another string slicing instruction which is capable of much
more than either LEFT$ or RIGHTS. The instruction word is MID$, and it
has to be followed by three items, within brackets, and using commas
to separate the items. The first item is the name of the string that you
want to slice, as you might expect by now. The second item is a

Getting Repetitive

number which specifies where you start slicing. This number is the
number of the characters counted from the left-hand side of the string,
and counting the first character as one. The third item is another
number, the number of characters that you want to slice, going from
left to right and starting at the position that was specified by the first
number,

pro3xl5:

local a$(9),b%5(11),c5 (8)

a$="Organiser"

b§="Programming"

c$="Language"

print mid$(a$,4,2)+mid$ (c$, 6,2)+mid$ (bS, 5, 3)
get

The listing (‘pro3x15’) above demonstrates shows how this can pick
out groups of letters which are not from the left or the right of existing
strings. The syntax of MID$ is:

MIDS (string to slice, starting place, no of chars to copy)

so that the brackets contain one string variable and two integers or
integer variables.

Inside, Upstairs and Downstairs

There are some string functions that are not so easy to place in groups,
but one, LOC, definitely belongs close to the slicing functions. The use
of LOC is to find if one string is contained within another. The syntax
is:

LOC (main string, short string)

and the result is a number value.

The number is the position number in the main string where the short
string starts. If the short string does not exist in the main one, then LOC
gives zero, and this number-or-zero choice can be used in a very
simple way to pick out strings, as the next listing (‘pro3x16’)
illustrates.

87



Psion LZ: A Dabhand Guide

pro3xlé:

local a$(30),b$ (30),c$(30),£5(30)
a$="Effective Management"
b$="How to Manage Purchasing"
c$="Keeping a Menagerie"
f$="Manage"

print loc(a$, £$)

print loc(b$, £$)

print loc(c$, £3)

get

In this example, three strings contain phrases which might be book
titles and the program is set to work to scan the titles looking for a
word ‘Manage’. The test is arranged so that if the word ‘Manage’ is not
found, the result will be zero - in a later Chapter we shall see how this
could be used to print different reports on the items. Note incidentally,
that if the strings to be searched contain ‘Manage’ and you are looking
for ‘manage’, then LOC will still find the word — the LOC action is not
case-sensitive.

Talking of upper and lower case letters, OPL has the functions UPPER$
and LOWERS to convert all the characters of a string to one form or the
other. These actions refer specifically to letters, not characters
generally, and only the letters of the alphabet are affected. Using
UPPERS is useful in comparing strings, because if you are searching for
Smith, it's useful to know that the entries of SMITH, smith and even
sMith will be correctly matched!

The provision of UPPERS$ is therefore very useful for writing programs
that search for matching strings, and also for arranging strings into
correct alphabetical order.

Note that the case of the characters in the original string is not changed
- the use of UPPERS or LOWERS need only affect comparisons, though
you can write lines such as:

K$=UPPERS (K$)

to convert all the characters to upper case and retain the same string
name.

Getting Repetitive

The REPT$ action is used when you want a character or set of
characters to be used to fill a string. Suppose, for example, you want to
print a line of 20 asterisk marks. You could type all of these 20
asterisks in a PRINT line, but OPL allows you to do this by using:

PRINT REPTS ("*",20)

which is a lot more compact. You can use a string variable for the first
item in the brackets a any number variable for the second, assuming
that they have been correctly assigned. You can also assign the
resulting string, using the form:

X$ = REPTS (A$, N%)

if the string variables have been declared correctly.

More Priceless Characters

It’s time now to look at some other types of string functions. If you
hark back a few pages, you'll remember that we introduced the idea of
the ASCII code. This is the number code that is used to represent each
of the characters that we can print on the screen. We can find out the
code for any letter by using the function ASC, which is followed,
within brackets, by a string character in quotes or a string variable (no
quotes). The result of ASC is a number, the ASCII code number for that
character. If you use ASC(“OPL"), then you'll get the code for the ‘O’
only, because the action of ASC includes rejecting more than one
character. The following listing (‘pro3x17’) shows this in action.

pro3xl7:
local a$(l)
input a$
print asc(a$)
get

You can enter any character from the keyboard and then see its ASCII
code printed on the screen. Another way of doing this is to switch to
Calc, and enter the character following a % sign, so that entering %p
would give 112, the ASCII code for p.



Psion LZ: A Dabhand Guide

ASC has an inverse function, CHR$. What follows CHRS$, within
brackets, has to be a code number, and the result is the character
whose code number is given. The instruction PRINT CHR$(65), for
example, will cause the letter A to appear on the screen, because 65 is
the ASCII code for the letter A. We can use this for coding messages.
Every now and again, it’s useful to be able to hide a message in a
program so that it’s not obvious to anyone who reads the listing.

Using ASCII codes is not a particularly good way of hiding a message
from a skilled programmer, but for non-skilled users it's good enough.
There is an example of this in Chapter Five.

The CHRS$ action, however, can do rather more than this suggests.
There are several ASCII codes that do not correspond to characters that
can be printed on the screen, and CHR$ allows us to use them. One
example is the use of CHR$(34) to put a quotemark into a PRINT line,
something we can’t do directly because the quotemark usually
indicates the end of a string to be printed. Using PRINT CHR$(16) will
sound the buzzer - try it.

Another ‘invisible’ character is CHR$(27). This is called the ESC
character, and is the same as is generated by the key marked ESC on
some desktop machines. By LPRINTIng strings that contain CHR$(27),
you can carry out many effects that make control of your printer
possible, and by PRINTing them you can send control codes to the
Organiser itself. The manual for OPL has only a brief mention of these
codes but they can be very useful in obtaining special effects such as
positioning the cursor.

The Law about Order

We saw earlier that the symbols =", ‘<, >’ can be used to compare
numbers. We can also compare strings, using the ASCII codes as the
basis for the comparison. Two letters are identical if they have
identical ASCII codes, so it’s not difficult to see what the identity sign,
=, means when we apply it to strings.

Getting Repetitive

If two long strings are identical, then they must contain the same
letters in the same order. It’s not so easy to see how we use the > and <
signs until we think of ASCII codes. The ASCII code for A is 65, and the
code for B is 66. In this sense, A is ‘less than’ B, because it has a smaller
ASCII code. If we want to place letters into alphabetical order, then, we
simply arrange them in order of ascending ASCII codes. This is not
totally straightforward, because the ASCII codes for the lower case
letters are greater than the ASCII codes for the upper case letters. This
would lead to the letter Z being placed before the letter a if we did not
use UPPERS on each string we compared. Languages with no UPPER$
statement are at a considerable disadvantage here!

This process can be taken one stage further, though, to comparing
complete words, character by character. The next listing (‘pro3x18’)
illustrates this use of comparison using the ‘=’ and ‘>’ symbols, and
making use of tests that will be explained in more detail in the
following Chapter.

pro3x18:

local a${20),b$(20),c$(20)
ag$="qgwerty"

print"Type a word",

input b$

if a$=lower$ (b$)
print"Same as mine"+chr$ (33)
pause 20

stop

endif

if a$>lowers$ (b$)

c$=a$

a$=b$

b$=c$

endif

print"Order is - "

print a$

print b$

get

The first line assigns a nonsense word - it's just the first six letters on
the first row of a typewriter. You are then asked to type a word. The

91



Psion LZ: A Dabhand Guide

comparisons are then carried out and if the word that you have typed,
which is assigned to B$, is identical to qwerty, ignoring differences in
case, then the message about the words being the same is printed, and
the program ends. If qwerty would come later in an index than your
word, then the contents of the variables are swapped. The variable C$
is used to hold the data from A$, then A$ is assigned with the contents
of B$. Finally, B$ is assigned with the contents of C$ which came
originally from A$.

If, for example, you typed peripheral, then since Q comes after P in the
alphabet and has an ASCII code that is greater than the code for P, your
word B§ scores lower than A$, and these three lines swap them round.
The last line will then print the words in the order A$ and then B$,
which will be the correct alphabetical order.

If the word that you typed comes later than qwerty, for example, tape,
then A$ is not ‘greater than’ B$, and the test for swapping fails. No
swap is made, and the order A$, then B$, is still correct.

Note the important point though, that words like qwertz and qwetx
will be put correctly into order - it’s not just the first letter that counts.
By using LOWERS in this example, the order will not be changed by
using capital letters; we could just as easily and effectively have typed
QWERTY in capitals and used UPPERS for the conversion. The LOWER$
conversion affects only the swap, not the display of words.

Complex Data — Put it on the List

The variable names that we have used so far are useful, but there’s a
limit to their usefulness. Suppose, for example, that you had a
program that allowed you to type in a large set of numbers. It would
be very unsatisfactory if you had to assign a new variable name to
each item, and if you had to put in an INPUT line for each and every
input.

It would be much more satisfactory, in fact, if you could have just one
INPUT routine that could be used in a loop, but to do this we need a

92

Getting Repetitive

different type of variable. The following listing (‘pro3x19’) illustrates
this, and we’ll ignore the first line for the moment.

pro3xl9:

local a%(10),n%

n%=1

while n%<11
a%(n%)=100*rnd+1

n%=n%+1
endwh
print" Marks List*®
print
n%=1
do

print"Item”,n%,
print”gets", a% (n%),
print"marks"
n%=n%+1

until n%>10

get

The first loop generates an (imaginary) set of examination marks. This
is done simply to avoid the hard work of entering the real thing, and
in this example RND*100+1 is used to generate a number whose value
will lie somewhere between 1 and 100 - there is no need to use INT
here because the number is being assigned to an integer variable. The
variable that is used to hold the mark number is something new,
though. It’s called a ‘subscripted variable’ or ‘array element’, and the
‘subscript’ is the number that is represented by N%. The name
‘subscripted’ that we use has nothing to do with computing, it's a
name that was used long before computers were around.

How often do you make a list with the items numbered 1,2,3.. and so
on? These numbers 1,2,3 are a form of subscript number, put there
simply so that you can identify different items. Similarly, by using
variable names A(1), A(2), A(3) and so on, we can identify different
items that have the common variable name of A. A member of this
group like A(2) has its name pronounced as ‘A-of-two’.

The usefulness of this method is that it allows us to use one single
variable name for the complete group, picking out items simply by

93



Psion LZ: A Dabhand Guide

their identity numbers. Since the number can be a number variable or
an expression, this allows us to work with any item of the group. The
example shows the group being constructed in a loop with each item
being obtained by finding a random number between one and 100,
and then assigned to A%(N%). Since A% is an integer name, this is an
integer array, and the N% is the subscript number which must be an
integer.

You can have arrays of any data type, number or string, but the
subscript numbers must always be integers. If you use any other type
of number variable as the subscript, it will be chopped to an integer, so
don’t expect to be able to refer to item A(2.5)!

In the example, ten of these ‘marks’ are assigned in this way, and then
the second loop prints each of them out. It makes for much neater
programming than you would have to use if you needed a separate
variable name for each number.

The LOCAL line has prepared the computer for the use of subscript
numbers from 1 to 10, but no higher. You must not attempt to use
A%(0), nor can you use A%(11) or any higher number. You will get an
error message if you do so, but only when the program runs, not when
it is translated.

The important part of the LOCAL instruction, then, consists of naming
each variable that you will use for arrays, and following the name with
the maximum number, within brackets, that you expect to use. You
aren’t forced to use this number, but you must not exceed it. If you do,
and your program stops with an error message, you will have to
change the LOCAL instruction and start again — which will be tough
luck if you were typing in a list of 100 names!

pro3x20:

local a(l0),n%

n=1

while n%<1l1l
a (n%) =int (rnd*100) +1
n¥=n%+1

endwh

n%=n%-1

94

Getting Repetitive

print"There are",n%,"items"
print"Total is",sum(a{(),n%)
print"Mean is",mean(a(),n%)
pause -50

print"Largest is",max(a({(),n%)
print"Smallest is",min(a(),n%)
print"sS.D. is",std(a{),n$%)
pause =50

The listing given above takes this use of array variables another step
further. This example again assigns a random number between one
and 100 to each of ten array elements. When this task is complete,
some functions are used, not on a single variable but on the whole
array.

There is a complete set of these ‘list’ functions, all of which are also
used in the Calculator, and they can act on a set of items of any type
given explicitly in a list, or on items in an array. There is one
restriction, however. If you use items in an array, the array must be of
floating point type. In other words, if your array is N%(A%), you have
to use other methods, but if it's N(A%) then all is well.

The syntax for any list function can be illustrated by using SUM. The
list form is X=SUM(A,B%,6,5.5) — with a mixture of integer and floating
point numbers and variables in the list within the brackets. The
alternative syntax is X=SUM(A(),10), which will take the sum of the
first ten items in the array called A, a floating point array. If you try to
use an integer array you will get the SYNTAX ERR message.

In this example, a set of numbers is generated at random, and these
functions are used to find the total, the average, the largest item, the
smallest item and the standard deviation (which is the average
difference from the mean for all the items). The printed lines are
arranged in sets of three, with a PAUSE to hold each set in place long
enough to read it - you could use a GET in these places to give yourself
more time, or use a PAUSE with a larger (negative) number.

Remember that using PAUSE with a negative number allows you to
end the pause by pressing a key.

95



Psion LZ: A Dabhand Guide

Table 3.2 provides a summary of the list functions and their actions.

Function Application

MAX(x,y,z..) Finds maximum in list

MEAN(x,y,z..) Finds average of list of numbers
MIN(x,y,z...)  Finds minimum in list

STD(x,y,z.)  Finds standard deviation of list of numbers
SUM(x,y,z..)  Finds sum total of list of numbers
VAR(x,y,z..)  Finds variance of list of numbers

Table 3.2.The list functions of OPL.

Note: The list is shown as (x,y,z..) which can use any mixture of
constant numbers (like 2.6), integer variables (like k%) and float
variables. The list can also consist of a floating-point array, with
nothing placed between the brackets, but the number of items stated
following a comma, like SUM(A(),20)

pro3x2l:

local n$(12,20),n%, 3%

n%=1

while n%<1l
print"Surname”, n%
input n$ (n%)

n%=n%+1
cls

endwh

n%=1

while n%<1l1
%=1
cls
do
print n$ (n%)
n%=n%+1
J%=9%+1
until j%>4
get

endwh

pause =50

The use of arrays is not confined to numbers, and the listing above
(‘pro3x21’) illustrates a string array. This has to be prepared for in the

96

Getting Repetitive

LOCAL line with a pair of numbers, one for the number of strings and a
second one for the maximum number of characters in a string. A
WHILE loop is then used to enter surnames of not more than 20
characters each, and the dimensioning provides for up to 12 of these,
though only 10 will be used.

After the names have been entered they are printed in batches of four,
with a ‘press-any-key’ stage to allow time to read each set. This is done
by using an inner loop with its own counter J% which prints in sets of
four and then returns to the main loop to reset J%. The main counter
N% is incremented each time a name is printed and the loop allows for
only 10 such items being printed. We needed to allow for 12 in the
array, however, because the inner loop operates in sets of four, and the
third set of four will make N% increment to 12 even though the outer
loop has specified an end after 10 items — this is because the WHILE test
cannot be made while the inner loop is executing.

Manipulating Arrays

The main point of using arrays is to manipulate data that is held in the
form of array items. For number arrays, we have seen how the list
functions of OPL allow for most of the useful manipulations of number
arrays to be carried out. Manipulation of string arrays can perform
almost anything that you want to do with the data, but it usually boils
down to two particular actions, searching and sorting.

More has been written on these actions than on anything else in
computing, but a lot that has been written was written a long time ago,
and some of it is very hard to follow unless you happen to be a student
of computing theory. In this Chapter, we can’t exactly go into great
detail about these actions, but we’ll look at one example each of
methods that we can use. These methods apply equally to any type of
array, but you have to make suitable adjustments.

For example, if you make a test for a number array that uses A%, then
adapting the program to a string array that uses A$ means that the
wording of the test must be changed. For that reason, I'll demonstrate
one number action and one string action.

97



Psion LZ: A Dabhand Guide

We'll start with searching. There’s no problem in searching an array
for the 56th item — you just do a PRINT A%(56), or whatever you want.
Even if this means an input step, it amounts only to:

INPUT X%
PRINT A% (X%)

and is no problem. The searching arises when you want to know if you
have any items that are divisible by seven, or any names that start with
‘R’. This involves looking at each item in the array and testing it,
which is what searching is all about. The simplest type of search
involves looking through all of the items, but if the items are arranged
in some order it's sometimes possible to devise quicker and more
elaborate searches, called binary searches.

Leaving these complications for the more advanced programmer, let’s
see what a search through a number list looking for numbers divisible
by seven would be like. The example that follows (‘pro3x22’) first
generates an array using random numbers, and you can see by the
time it takes to produce the ‘List ready’ report that this takes a fairly
short time.

pro3x22:
local a%(100),n%
n%=1
do
a% (n%)=rnd*100+1
n%=n%+1
until n%>100
print"list ready"
n%=1
do
if a%(n%)/7.0=a%(n%)/7
print a%(n%);

print " ";

endif

n¥%=n%+1
until n%>100
get

98

Getting Repetitive

Since the list consists of numbers generated almost at random, they are
in random order and some of them will probably be divisible by seven.
The search uses a loop which tests each item on the list by using the
line:

IF A% (N%)/7.0=2% (N%) /7

to detect divisibility by seven. By using in the first half the dividing
number in the form 7.0 we force the division to give a floating point
answer, s0 that for a number such as 50, the result will be 7.1428571.
This is compared to the integer result, obtained by using seven rather
than 7.0, which for the number 50 would be seven. The two are
identical only when the number is exactly divisible by seven - this is a
very useful way of checking for multiples.

If the test is true, and the number does divide evenly by seven, then
the number is printed. Note that the case of A%(N%)=0 would have to
be excluded if there were any chance of zeros occurring in the data, as
the type of test used here would consider that zero was divisible by
seven.

A common mistake in your first effort at searching is to find only the
first matching answer, and to stop the search at that point. Unless you
know that there can be only one item that answers the description this
can be a cause of problems.

If this were a string list, you might be looking for all of the items that
started with a particular letter. You would therefore have an input line
to find what letter you wanted to look for, and you would assign this
to some variable like 5%. You would then use a similar loop, but with a
test such as:

IF LEFTS$ (S$,1)=LEFTS (JS(N%),1)}

and following this a line that printed the string items that were found.

Sorting into order is a very much more difficult business. At one time,
all books on BASIC would show a routine called the Bubble-sort, whose
only merit was that it was easy to explain. Since a Bubble-sort on a
long string array can take hours to complete, it'’s not one that is of



Psion LZ: A Dabhand Guide

much use to programmers, unless you are working with a string array
that is almost completely sorted to begin with. The problem is that any
sorting routine that is efficient is very difficult to explain, and the best
way of understanding it is to go through it step by step.

The faster routine that is the favourite in terms of speed and
comparative simplicity is called the Shell-Metzner sort, after the names
of its original programmers. It is based on the idea of comparing items
that are some way apart in the list, starting by dividing the list into
two equal parts, and looking at the first item in each part. These items
are compared, and if they are in the wrong order, they are swapped.
The spacing is then decreased and the exercise repeated until the items
that are being compared are next to each other. Another set is then
taken, and the process repeated until all the items of the whole list are
in order.

The Organiser has its own built-in sort routine which can be used, for
example, to put Notepad items into alphabetical order. This, however,
is not made available as a routine in OPL so that if you need to sort a
set of items in OPL you have to use your own routine. The listing
below (‘pro3x23’) shows this in action, with a list that is made up from
‘words’ created at random - and that’s a routine that you might want
to use for your own tests!

pro3x23:
local
w5 (100,20) ,n%, mx%,a$(20), j%, y%, it%,t%, £fg%, 2%, msg$ (80)
mx%=100
msg$="Please walt...creating strings. Press any key to
start."
view(l, msg$)
nk=1
do
ag=""
%=1
t%=2+rnd*10
do
a$=a$+chr$ (65+rnd*26)
J%=9%+1
until J%>=t%

100

Getting Repetitive

w$ (n%) =a$
n%=n%+1
until n%>100
msg$="List ready - press any key to sort”
view(l,msg$)
cls
y&=1
while y%<mx%
¥yE=2*y%
endwh
while y%<>0
yi=(y%-1)/2
1t%=mx%-y%
t$=1
do
i%=t%
do
fg%=0
z%=3%+y%
if ws(z%) <=ws (%)
as=ws (z%)
w$(z%)=w$ (3%)
w$ (3%) =a$
I%=3%-v%
if j%>0 and y%>0
fg%=1
endif
endif
until fg%=0
t=t%+1
until t%>it%
endwh
rem End of sort
n%=1
do
if n%/4.0=n%/4
get
cls
endif
print w$(n%)
n%=n%+1
until n%>100
get

101



Psion LZ: A Dabhand Guide

The sort routine then fixes a number that is a power of two to decide
where to start splitting the list, and it then starts making comparisons.
If you want to see what items are being compared, then add a line:

PRINT Z%,J%

along with a pause, but don’t keep this in because it greatly slows
down the rate of sorting. You can use this routine for sorting numbers
rather than strings, simply by substituting a number array for W$ -
you could, for example, use NUM%, or NUM for integers or for floats
respectively.

102

4 : Menus and Procedures |LZ

Very often we want to present a user with a menu on the screen. A
menu is a list of choices, usually of program actions. By picking one of
these choices, we can cause a section of the program to be run. The use
of menus is catered for in various ways in other versions of BASIC, but
OPL introduces its own methods that are particularly suited to the
Organiser with its 20-character four-line screen. Using the OPL method
makes your own menus look exactly like the types of menu that the
Organiser uses in its other actions.

The programming of any menu consists of two parts, the display of the
items from which the choice is made, and the way in which the
different procedures for these choices are run.

Since OPL provides its own way of displaying items, we can
concentrate for the moment on how procedures are used, a point
which is central to the way that more advanced OPL programming can
be carried out.

This listing (“pro4x1’) illustrates this in action:

prodxl:

local t$(20),und$(20),a$(20)
£§="0PL Computing"

centre: (t$,1)
und$=rept$("-",len(t$))
centre: (und$, 2)

print

print"Neat"+chrs$ (33)

get

centre: (a$,n%) 0
at (21-len(a$))/2,n% \
print a$

103



Psion LZ: A Dabhand Guide

When the program runs, three string variable names are declared and
a phrase is assigned to the string variable T$. The next line is
centre:(T$,1), which means that the program must jump to the routine
which starts at the label word centre, and carry the value that has been
assigned to T$ with it along with the number value of one. When you
see a name ending with a single colon, then you have to look for a
matching procedure which carries the same name. This procedure
must be separately translated and stored in the RAM, something that
sharply distinguishes OPL from any other common form of BASIC. Any
procedure in OPL will start with a heading which is its own name, and
any other procedure names refer to other procedures which are
separately recorded.

The name centre is followed by the usual colon, and then also by a
string name and a number within brackets. The string name that is
used is the name of an assigned string that the procedure centre will
work on. The number also is supplied so that it can be used by centre.
These items, in this example a string name and a number, are called
‘parameters’, and by putting these parameters within brackets when
the name of a procedure is used, the parameters are ‘passed’ to the
procedure.

Looking at the separate listing, you can see the procedure
centre(A$,N%), which is the procedure that is called up by using the
word centre in the main program. This procedure is started as follows:

1)  Select New from the Prog menu.
2) Type centre, press EXE.

3) The word centre: now appears with the cursor following it. Type
the portion within brackets.

4)  Press EXE again to start the typing of the actions of the procedure.

The name is the important thing here, and the quantities within the
brackets can be anything you like provided that they are of the same
type as the quantities in the brackets used in the centre line of the main
(or calling) program. Our calling line used a string and an integer, so
the procedure line must also use a string quantity and an integer in the

104

Menus and Procedures

same order, but they can be given any names that you like to use for a
string and an integer variable. In the procedure, the number of
characters in A$ is found. The action of calling a procedure includes
having values automatically assigned to its parameters. Therefore,
when centre is first called, the variable A$ is assigned the value of T$
and N% is assigned the value one. It's just as if you had programmed
the lines:

AS=TS
N%=1

to pass the value that has been assigned to T$ into the variable A$ and
one into the variable N%.

The following lines then locate the cursor at a position which will print
the value of A$, which is identical to T$, centred on the screen, using
line N%. The string is printed and at that point the procedure ends.
When this happens, control is returned to the line that called the
procedure — most varieties of BASIC require a command RETURN for
this action but, as we shall see, OPL uses this word rather differently,
more like the way it is used in languages other than BASIC. In this first
case, when the centre procedure ends, the return is to the fourth line
which carries out an assignment to UND$ of a string of underlining
dashes — note how REPT$ has been used here. This time calling
centre(UND$,2) in the next line will cause this value of UND$ to be
printed centred on the second line of the screen. The main program
then prints a blank line and then a comment, with CHR$(33) being
used to obtain an exclamation mark.

There is quite a lot to grasp in this first example. The first point is that
using the name of a procedure will interrupt the normal flow of a
program, allowing something to be done, and then resuming as if
nothing had happened to interrupt the flow of the program. The
second point is that a procedure call like this allows you to specify
variables whose values can be passed to be used by a procedure. Note
that I said that their values are passed - you don’t use T$ or UND$ in
the procedure in the listing above, you pass their values to A$ and N%
and then use these variables. This way, one procedure can be called

105



Psion LZ: A Dabhand Guide

many times and by many different programs, each passing on
different data. You aren’t forced to pass values if you don’t want to,
but using this method allows you to write procedures that you can use
much more easily and in more than one program; you can keep a stock
of procedures for all your needs, and the centring procedure could
well be one of them. The third point is that the variables A$ and N%
used inside the procedure are local to the procedure. If you put in a
line such as:

PRINT A$

anywhere outside the centre procedure, then nothing will be printed,
A% simply does not exist except inside the procedure. If you want to
use other variables inside the procedure and ensure that they also exist
only within the procedure, you can use the word LOCAL to label them,
such as:

LOCAL a,nr,b$

You can even have other variables used in the rest of the program with
these names, but with entirely different values. A procedure is a little
program working in a world of its own, and it can be unaffected by the
rest of the program expect for the variable values that are passed to it.
In OPL, every program is itself a procedure, with the difference that
some can be run independently. You can, for example, run the main
program as listed earlier so that it will then call the procedure centre,
but you cannot run the procedure centre by itself because it cannot run
unless one string and one integer are passed to it.

The word LOCAL is used, then, to show that variables will be used in a
procedure (which can mean a main program) and will not exist
anywhere else. You can, if you want to, use the word GLOBAL to
describe your variables, so that you could have a main procedure
starting:

GLOBAL A$(20),N%,X%,J%,B5(5,20)

with these global variables. What this means is that this program could
then call up other procedures which could also make use of these

106

Menus and Procedures

variables without needing the values to be passed. To show the
difference, look at a version of the program (‘pro4x2’) which uses
global variables:

prodx2:

global t$(20),n%
t$="0PL Computing"
n%=1

cen:
té=repts("-",len(t$))
n%=2

cen:

print
print"Neat"+chr$ (33)
get

cen:

at (21-len(t$))/2,n%
print t$

This listing is shown, with variables T$ and N% being declared as
global, meaning that they can be used by any other procedure which
includes these names. When you want anything centred now,
however, it has to be assigned to the variable name of T$, and its line
number has to be assigned to N%. By way of compensation, you do
not have to put any quantities into brackets when you call the centring
procedure.

Normally, we try to avoid using global variables, because their use ties
you down to specific variable names which must be used. Global
variables can lead to considerable confusion because the same variable
names have to be used in both the calling procedure (the main
program) and the called procedure.

Another risk is that your programs can become full of lines that are
used only to transfer a value from one variable to the one that has to be
used by the procedure that will be called, lines like T$=A$ or N%=X%,
simply to ensure that these global names will be used. The most
damning point against global variables is that they tie down your use
of a procedure. When you write a procedure that uses only the

107



Psion LZ: A Dabhand Guide

variables that are passed to it within the brackets following its name,
plus any local variables of its own, then that procedure is a universal
one that can be called by any other program or other procedure. If you
have a procedure which uses local variables A$ and X%, then this does
not prevent you from using A$ and X% as local variable names in any
other procedure.

In addition, using local variables avoids the risk of variables being
altered ‘accidentally’. Suppose, for example, that you have a main
procedure which uses a global variable J%. If a procedure is then
called which has a line such as

J¥=2

then this will change the value of J% that the main procedure uses. If
J% is declared as local in both procedures, then J% can have different
values in each. If all variables are local, values are passed from a
procedure only by way of quantities within brackets when the
procedure is called.

Similarly, a value is passed back from a procedure only by way of a
RETURN instruction with a quantity within brackets (see later). Using
local variables isolates your procedures against unintended changes in
values, and the only price you need to pay is a little more attention to
passing the quantities that you need to use.

The place of global variables, as we shall see later, is in a set of
procedures that belong only with each other, and in which the use of
local variables would cause difficulties, requiring values to be passed
to and from procedures too often or requiring more than one value to
be returned from a procedure.

A procedure that uses local variables can also pass a value back to the
procedure that called it. The following listing (‘pro4x3’) shows a very
simple example of this in action for a conversion routine.

prodx3:

local kg,lb
print"Enter kg."
input kg

108

Menus and Procedures

lb=conkg: (kg)
print"=",1b,"1lbs."
get

conkg: (n})

local x

X=n*2.2

return x

This program uses local variables KG and LB for amounts of kilograms
and pounds respectively, and a quantity is assigned to KG by way of
an INPUT instruction. The conversion procedure is then called using:

LB=conkg: (KG)

which means that a quantity will be returned assigned to variable LB
after the procedure conkg has been run with the value of KG passed to
it. The program then prints out the value of variable LB. In the
procedure conkg, which has been separately typed, translated and
saved, a local variable X is used in the conversion line X=N*2.2, and
then this value is passed back to the calling program by using RETURN
X — you can separate the X from the word RETURN by a space or by
using brackets.

As usual, because X is local to the procedure its use here will not
change any value of a variable X that might exist in the calling
procedure (the main program) — in this example the calling procedure
has not used variable X. The value is then returned by using RETURN X,
and will be assigned to variable LB if the calling line has been written
in the form:

LB= conkg: (KG)

as shown. This does not force you to obtain this value, because if you
simply used conkg(KG) then the value would exist but would be
ignored. You would hardly want to ignore it in this case, but some
procedures might carry out an action that you wanted, like centring a
string, but return a quantity that you did not want, like the number of
characters in the string. In such a case, you could use the procedure
name as if nothing were returned.

109



Psion LZ: A Dabhand Guide

Note that many of the functions of OPL work in the same way — you
are not obliged to make use of a returned value. Only one value can be
returned in this way, so that if you need more than one value to be
returned you need to do so by way of global variables that have been
declared in the calling procedure.

The use of procedures stored in the memory, then, is something that
distinguishes OPL from other versions of BASIC, and makes for very
simple and economical programming, since any new procedure that
you write can make use of any of the previous procedures that you
wrote earlier, providing that they are stored in RAM or in one of the
memory packs (EPROM). If you store a procedure in a Datapack, you
will need to use its reference letter (B: or C:) when you call it.

Menus

Now for the application to menus, and the following listing (‘pro4x4’)
shows procedures as they might be used as part of a (totally
imaginary) games program in which you are invited to choose in the
usual Organiser way by selecting a word with the cursor and then
pressing the EXE key.

prodxd:

local c%,m%

mnu: :

cls

m$=menu ("Vampire, Werewolf, Zombie, Mummy, Picket, Quit")
if m%=0 or m%=6:stop
elseif m%=1 :vam:
elseif m%=2 :wer:
elseif m%=3 :zom:
elseif m%=4 :mum:
else m%=5 :zom:
endif

goto mnu::

zom:

print"Routine for"
print"Zombie or picket.”
pause -50

110

Menus and Procedures

All of this is placed inside a GOTO loop so that this instruction can be
repeated if another choice is wanted following the completion of one
choice. The M%=MENU line will assign to the variable M% a number
that depends on the position of each word in the menu, using one for
Vampire, two for Werewolf and so on. When you see this menu on the
screen, it takes up three lines of the screen:

Vampire Werewolf
Zombie Mummy
Picket Quit

and you need to be careful to avoid menus of this type which would
require more than four lines. If you need to have longer menus then
you will either have to use the cursor keys to see the hidden lines, or
go for a one-line menu in which the menu line can be scrolled
sideways. This latter method makes use of the instruction MENUN
which is very similar to MENU except that a line number is specified.
Note that the words which form the menu choices are placed between
one set of quotes in the MENU instruction, not with one pair of quotes
per word.

The choice is then carried out by the set of IF and ELSEIF lines that
follow. To make these more compact, use has been made of the colon
as a separator, so that instead of writing the two lines:

IF M%=0 OR M%=6
STOP

the simple line:

IF M%=0 OR M%=6 :STOP

is used - note that there must be a space preceding the colon. The
other choices are put into the ELSEIF lines, using the colon as a
separator as well as to mark the names of other procedures, and the
last of the selection lines uses ELSE since no other choices remain to be
made. The selection is ended in the usual way with the ENDIF line, and
followed by the GOTO MNU:: which makes the loop endless until the
Quit option is chosen from the menu. You could program the endless

111



Psion LZ: A Dabhand Guide

loop with a DO...UNTIL, using an impossible condition for UNTIL (like
UNTIL M%=7), but this is one of the few examples where a GOTO type
of loop is preferable. Note that you can use a procedure name more
than once if you want to summon the same procedure for different
choices.

A procedure is extremely useful in menu choices, but it's even more
useful for pieces of program that will be used several times in a
program. The centring example is one of these, and others include the
searching and sorting routines that we have looked at. The important
point is that any one of these routines can be quickly and easily
modified to be used with any calling routine that you like to use,
simply by passing the correct items to the procedure. For a sorting
routine, for example, you would pass the name of the array to be
sorted and the number of items in the array.

Rolling Your Own

You can get a lot of worthwhile use and enjoyment from your
Organiser when you use it to run programs from program packs that
you have bought. You can obtain even more enjoyment from using
OPL by typing in programs that you have seen printed in magazines or
books. Even more rewarding is modifying one of these programs so
that it behaves in a rather different way, making it do what suits you.
The pinnacle of satisfaction, as far as computing is concerned,
however, is achieved when you design your own programs. These
don’t have to be masterpieces. Just to have decided what you want,
written it as a program, entered it and made it work is enough. It's
100% your own work, and you’ll enjoy it all the more for that. The
main reason, though, is that a bought program may never allow you to
do exactly what you want to do.

Now I can’t tell in advance what your interests in programs might be.
Some readers might want to design programs that will keep tabs on a
stamp collection, a record collection, a set of notes on food preparation
or the technical details of vintage steam locomotives. Programs of this
type are called ‘database’ programs, because they need a lot of data

112

Menus and Procedures

items to be typed in and recorded. There is less reason to need these
programs written in OPL than in other varieties of BASIC because you
have database facilities built into the Organiser ready to use. On the
other hand, you might be interested in the manipulation of numbers or
strings in order to deal with your paperwork, adding totals, finding
averages, searching for items; all the types of actions that we have
been looking at.

What we are going to look at in this section is how a simple program
can be designed using procedures because this is a design method that
can be used for all types of programs. Once you can design simple
programs of this type, you can progress, using the same methods, to
design your own programs of any type. The illustration will be of an
educational type of program that carries out a quiz action with words
- this type has been chosen because it requires no specialist
knowledge. You might, of course want to design for yourself a
program that calculates radio transmitter ranges, the correlation
between pesticide residues and wild-life mortality, one that keeps a
record of rainfall and sunshine hours, whatever your specialised needs
may be.

The principles of designing such programs are always the same, so
that this example provides the same experience as you need for your
own purposes with the advantage that its principles are known to
every reader, unlike a more specialised program.

Two points are important here. One is that experience counts in this
design business. If you make your first efforts at design as simple as
possible, you'll learn much more from them. That’s because you're
more likely to succeed with a simple program first time round. You'll
learn more from designing a simple program that works than from an
elaborate program that never seems to do what it should. We have
already dabbled with the design of simple programs, and I want to
show you that this is all you ever need! The second point is that
program design has to start with the computer switched off, preferably
in another room! The reason is that program design needs planning,
and you can’t plan properly when you have temptation in the shape of
a keyboard in front of you. Get away from it!

113



Psion LZ: A Dabhand Guide

Put It On Paper

We start, then, with a pad of paper. For myself, I use a ‘student’s pad’
of A4 which is punched so that I can put sheets into a file. This way, I
can keep the sheets tidy, and add to them as I need. I can also throw
away any sheets I don’t need, which is just as important. Yes, I said
sheets! Even a very simple program is probably going to need more
than one sheet of paper for its design. If you then go in for more
elaborate programs, you may easily find yourself with a couple of
dozen sheets of planning and of listing before you get to the keyboard.
Just to make the exercise more interesting, I'll take an example of a
program, and design it as we go. This will be a very simple program,
but it will illustrate all the skills that you need.

Start, then, by writing down what you expect the program to do. You
might think that you don’t need to do this, because you know what
you want, but you'd be surprised. There’s an old saying about not
being able to see the wood for the trees, and it applies very forcefully
to designing programs. If you don’t write down what you expect a
program to do, it's odds on that the program will never do it!

The reason is that you get so involved in details when you starting
writing the lines of BASIC that it’s astonishingly easy to forget what it's
all for. If you write it down, you'll have a goal to aim for, and that’s as
important in program design as it is in life. Don’t just dash down a few
words. Take some time about it, and consider what you want the
program to be able to do. If you don’t know, you can’t program it!
What is even more important is that this action of writing down what
you expect a program to do gives you a chance to design a properly
structured program.

Structured in this sense means that the program is put together in a
way that is a logical sequence, so that it is easy to add to, change, or re-
design. If you learn to program in this way, your programs will be
easy to understand, take less time to get working, and will be easy to
extend so that they do more than you intended at first.

As an example, take a look at the numbered list below:

114

Menus and Procedures

1) Present the name of a country on the screen, picked at random.
2)  Ask for its currency unit.

3) Reply must be correctly spelled, using capital first letter.

4)  User must not be able to read answer by using EDIT.

5)  Allow one mark for each correct answer.

6)  Allow two chances at each question.

7)  Keep count of number of attempts.

8) Show score as number of correct answers and number of
attempts.

This shows a program outline plan for a simple word game. The aim
of the game is to become familiar with the names of countries and their
units of currency. The program plan shows what I expect of this game.
It must present the name of a country, picked at random, on the
screen, and then ask what the name of its currency is. A little bit more
thought produces some additional points. The name of the currency
will have to be correctly spelled.

A little bit of trickery will be needed to prevent the user (son,
daughter, brother, or sister) from finding the answers by looking at the
program by selecting EDIT and looking for the contents of the arrays.
Every game must have some sort of scoring system, so we allow one
point for each correct answer. Since spelling is important, perhaps we
should allow more than one try at each question. Finally, we should
keep track of the number of attempts and the number of correct
answers, and present this as the score at the end of each game.

Now this is about as much detail as we need, unless we want to make
the game more elaborate. For a first effort, this is quite enough,
because if we design it correctly, we can add as much elaboration as
we like later. How do we start the design from this point on?

The answer is to design the program in the way that an artist paints a
picture or an architect designs a house. That means designing the
outlines first, and the details later. The outlines of this program are the

115



Psion LZ: A Dabhand Guide

steps that make up the sequence of actions. We shall, for example,
want to have a title displayed. Give the user time to read this, and then
show instructions. There’s little doubt that we shall want to do things
like assign variable names, dimension arrays, and other such
preparation. We then need to play the game. The next thing is to find
the score, and then ask the user if another game is wanted. Yes, you
have to put it all down on paper! The list below shows what this might
look like at this stage.

1) Display title, then instructions.

2) Display name of country.

3)  Ask for name of currency unit.

4) Compare reply with correct answer.

5) If correct, increment score, increment tries, ask if another wanted.
6) If not correct, allow another try.

7)  If second try not correct increment tries.

8) Ends when N key used in answer to ‘Another?’ question.

Foundation Stones

Now at last, we can start writing a chunk of program. This will just be
a foundation, though. What you must avoid at all costs is filling pages
with BASIC lines at this stage. As any builder will tell you, the
foundation counts for a lot. Get it right, and you have decided how
good the rest of the structure will be.

The main thing you have to avoid now is building a wall before the
foundation is complete. It's reasonable to keep most of your
instructions and lines of text in the main procedure (the main
program) because you will not want to call up these things from any
other program. Some of the data manipulations, however, may be
useful in other programs and should therefore be carried out by using
separate procedures.

116

Menus and Procedures

This listing (‘pro4x5’) shows what you should aim for at this stage:

prodxS:

local msg$ (20)
msg$="COIN OF THE REALM"
centre: (msg$, 1)
pause -30

cls

rem instructions
cls

rem set variables
do

playit:

scorit:

ask:

until done%

There are only thirteen lines of program (on screen) here, and that’s as
much as you want. This is a foundation, remember, not the Empire
State Building. It's also a program that is being developed, so we've
hung some ‘danger — men at work’ signs around. These take the form
of the lines that start with REM. REM means REMark or REMinder, and
any line of a program that starts with REM will be ignored by the
computer.

This means that you can type whatever you like following REM, and
the point of it all is to allow you to put notes in with the program.
These notes will not be printed on the screen when you are using the
program, and you will see them only when you Edit.

In the program listing, I have put the REM notes on lines which will
later be filled with more instructions. This way, I know where lines
need to be added later, allowing me to concentrate for the moment on
the more important parts of the program design.

One point that is never obvious is what has to be put into the LOCAL
and GLOBAL instructions, because in other versions of BASIC much less
forward planning is required - it should be done, but you are not
forced to do it. As it happens, this example illustrates the use of global
variables rather well, and shows reasons for preferring global to local
variables in this case.

117



Psion LZ: A Dabhand Guide

Fundamentally, we know that we need to keep a score, so that two
numbers will be used, one for the score of correct answers and one of
the total attempted. Now we need to assign these numbers in a
procedure, but we don’t want their values restored to zero each time
the procedure runs, otherwise we cannot keep an overall score, only a
score for each question. The key here is ‘overall scene’ - if you have a
variable that is concerned with the overall scene, chances are it ought
to be a global variable.

Some languages permit you to have local variables that will retain
their values between calls, but this cannot be done in OPL. Since both a
score and a total number of attempts needs to be updated each time
the playit procedure is used, two variables have to be updated each
time, and RETURN provides for passing back only one variable value.
In this example, then, the use of global variables to keep the score is
justified.

Another variable is DONE%. This is going to be used to determine for
how long the test goes on, by typing an N answer to a question such as
Do you want another?. This variable will be TRUE or FALSE, and we
can assign it as being FALSE at the start of the program, altering it only
when the n key is pressed at the prompt line of Do you want another?.
Once again, making this a global variable allows for simpler design of
the procedures, taking into account that these procedures might not be
used for other purposes.

Let’s get back to the program itself. As you can see, it consists of a set
of procedure names for procedures that we haven’t written yet. That's
intentional. What we want at this point, remember, is foundations. The
program follows the original eight point plan of exactly, and the only
part that is not committed to a REM or a procedure is the main title -
and it uses the procedure centre that was illustrated earlier in this
Chapter, and which must be in the memory of your Organiser if this
example is to be used.

Take a good long look at this thirteen-line piece of program, because
it's important. The use of all the procedures means that we can check
this program easily — there isn’t much to go wrong with it. We can

118

Menus and Procedures

now decide in what order we are going to write the procedures and
the lines that will replace the REM lines. The wrong order, in
practically every example, is the order in which they appear.

Always write the instructions last, because they are the least important
to you at this stage. In any case, if you write them too early, it's odds
on that you will have some bright ideas about improving the game
soon, and you will have to write the instructions all over again.

The next step is to get to the keyboard (at last, at last) and enter this
core program. This allows you to test the action of the title at least,
though the absence of the other procedures means that nothing else
can be tested.

The important point, however, is that this is simple, and it represents
the order of actions that you want. A simple core can be built on and
elaborated, and you can see from its simplicity whether or not it is
carrying out the actions in the order that you want. A complicated core
is difficult to follow, difficult to check, and much more likely to give
trouble. A simple core is particularly important if you have no printer
facilities, because it’s very difficult to work on a large piece of program
if you can use only the screen of the Organiser.

The next step is to make sure that you have this core program saved
and then keep adding to the core. If you have the core recorded, then
you can load this back into your Organiser, add one of the new
procedures, and then test. When you are satisfied that it works, you
can record the whole lot again, using the same filename (unless you
want to keep the early versions).

Next time you want to add a procedure, you start with this version,
and so on. This way, you keep in the memory a steadily-growing
program, with each stage tested and known to work. Again, this is
important. Very often, testing takes very much longer than you expect,
and it can be a very tedious job when you have a long program to
work with. By testing each procedure as you go, you know that you
can have confidence in the earlier parts of the program, and you can
concentrate on errors in the new sections.

119



Psion LZ: A Dabhand Guide

Remember that each separate procedure will be translated and saved
independently, and any variables that are local to that procedure are
not passed to the main procedure, and will have values that start at
zero each time the procedure is called.

First Procedures

The next thing we have to do is to design the procedures. Now some
of these may not need much designing. Take, for example, the
procedure for the ‘Do you want another’ question, using procedure
ask. This is just a familiar GET$ routine, along with a bit of PRINT, so
we can deal with it right away. The listing segment below (‘ask:’)
shows the form it might take, which is not as simple as you might
think.

ask:

cls
print"Another"+chr$ (63)
if get$="y"

done%=0

else done%=-1

endif

The variable DONE% from the main procedure has to be assigned as
true or false (remember that these are numbers), and because the
variable DONE% is global it does not have to be passed to or from the
procedure.

If you did not want to make DONE% a global variable, then it would be
possible to write the procedure rather differently, perhaps using STOP
if the n key were pressed, or passing back a value so that the
procedure could be called by using:

DONE% = ask:
you should try out these possibilities for yourself, because they can
lead to this being a more universal routine, one that can be adopted for

any purpose that requires something to be printed and a key to be
pressed.

120

Menus and Procedures

Unfortunately, OPL does not recognise the use of the words TRUE and
FALSE as being equivalent to the numbers -1 and 0 respectively, so that
in this procedure, we have to assign the numbers directly as 0 if the y
key has been pressed (not done) and -1 if any other key has been
pressed. The test that is used in the main procedure is: UNTIL done%,
and this is valid because tests such as WHILE, UNTIL and IF will
recognise that -1 means TRUE and 0 means FALSE. Type in the new
procedure, using the name ask:, translate it and save it, and now test
the core program with this procedure in place.

Now if you simply run the main procedure unmodified, it will stop at
the point where the first unwritten procedure is called for. Testing this
routine therefore requires a bit of cunning and some modifications of
the main procedure. As it exists at present, the main procedure will
start its DO loop, and then stop when it encounters the procedure
name of playit: because this procedure as yet does not exist.

What we need to do then is to insert a GOTO PLACE:: instruction
immediately following DO, and put the PLACE:: label name into
position immediately before ask:. This will force the loop to consist of
repeating the ask: procedure only, jumping around the unwritten
names. You can keep this label system in until the program is almost
complete, shifting the position of label PLACE:: each time a new routine
is available to test.

Now we come to what you might think is the hardest part of the job -
the procedure which carries out the playit action. In fact, you don’t
have to learn anything new to do this. The playit procedure is
designed in exactly the same way as we designed the core program.
That means we have to write down what we expect it to do, and then
arrange the steps that will carry out the action. If there’s anything that
seems to need more thought, we can relegate it to a procedure to be
dealt with later.

As an example, take a look at the following ‘program outline’:

1) Keep answers as ASCII codes packed in a string array, three digits
per character.

121



Psion LZ: A Dabhand Guide

2)  Keep questions as another string array.

3) Random number selects both question and answer items.

4) Use variable TR% for number of tries.

5)  Use variable 5C% for score.

6) Use variable GO% to record number of attempts at one question.

This is a plan for the playit procedure, which also includes information
that we shall need for the setting-up steps. The first item is the result of
a bit of thought. We wanted, you remember, to be sure that some
smart user would not cheat by looking up the answers by selecting to
Edit the program. The simplest deterrent is to make the answers in the
form of ASCII codes. It won’t deter the more skilled, but it will do for
starters.

I've decided to put all of the answers in order into string arrays in the
form of a string of ASCII codes for each answer, with each code written
as a three-figure number. Why three figures? Well, the capital letters
will use two figures only, the small letters three, so making them all
into three figures simplifies things, because it allows us to move from
one letter to another by counting out three figures - what we do is to
write a number like 86 as 086, and so on. That’s the first item for this
procedure.

The next one is that we shall keep the names of the countries in an
array. This has several advantages. One of them is that it’s beautifully
easy to select one at random if we do this. The other is that it also
makes it easy to match the answers to the questions. If the questions
are items of an array whose subscript numbers are one to 10, then we
can place the answers into another string array and make the number
that selects the question also select the correct answer. Even neater is
to make both questions and answers part of the same array, a two-
dimensional array.

The next thing that the plan settles is the names that we shall use for
variables. It always helps if we can use names that remind us of what
the variables are supposed to represent. In this case we have already

122

Menus and Procedures

determined that we shall use the global variables of SC% for the score
and TR% for the number of tries, so that these are repeated here only as
reminders. The third one, GO% is one that we shall use to count how
many times one question is attempted. This can be local to this
procedure, because the play plan is to allow another go if there is a mis-
spelling, and we can set GO% to 0 for the first attempt and to one for a
second, allowing no further repetitions after GO% has reached one.
This allows us to use a DO loop which contains GO%=GO%+1 and
ending with UNTIL GO%=1 OR (some other test). The (some other test)
means that there will be a test for a correct answer, but we haven't
thought that one out yet. Finally, we decide on a name for the arrays
that will hold the country names and the ASCII codes, CNM$ and CNA$.
These will have to be added to the global variables in the main
procedure.

Play Away

The following listing (‘playit:") shows what I've ended up with as a
result of the plan:

playit:
local choose%, go%, as(10)
choose%=1+rnd*10
go%=-1
do
cls
print"Country 1is",cnm$ (choose%)
print"Currency is",
input a$
ans$=checkit$: (a$, choose%)
if a$=ans$
go%=2
sch=sc%+l
else go%=go%+l
print"Incorrect”
pause 20
endif
until go%>=1
tr=tr%+l

123



Psion LZ: A Dabhand Guide

The procedure starts by picking a random number in the range one to
10 so that this can be used to pick out the name of the country and also
the coded form of the answer.

This random number is assigned to CHOOSE%, which can be a local
variable because it need not be used outside this procedure. Another
local variable, GO%, is assigned with a value of -1 so that it can be
incremented twice when answers are given before it gets to the value
of +1.

The next portion is a DO loop which will continue until the value of
GO% is one or more. The screen is cleared, and the question is printed.
The name of the country is put in by printing the array item which has
been picked out by the number CHOOSE%.

The user is then asked for the name of the currency, which has to be
typed starting with a capital letter then continuing with lower case
letters — failure to use a capital, or using all capitals, will constitute an
error. The true answer is then obtained by using the procedure
checkit$.

Now we’ll look at checkit$ later, and the main thing to note about it at
the moment is that it has to have a name that ends with the string sign
because it will return a string, the ANS$ that holds the correct answer.
The answer can now be checked against the answer supplied by the
player, using an IF test. If the answer is correct, the value of GO% is
made equal to two, so as to end the loop, and the score is incremented.
If the answer is incorrect, using the ELSE clause, variable GO% is
incremented, and the message ‘Incorrect’ is printed, followed by a
short pause.

When the loop ends, either because a correct answer has been supplied
or because two incorrect answers have been supplied, the variable
TR% which holds the number of tries is incremented. This ends the
playit procedure which has posed a question, obtained an answer,
checked the answer and marked the score. We can now look at the
procedure that playit has called, checkit$. The program lines are
shown below (‘checkit$’):

124

Menus and Procedures

checkit$: (a$, choose%)

local ans$(10),n%, J%

ans$=""

n%=len (cna$ (choose%))

1%=1

do
ans$=ans$+chr$ (val {(mid$ (cna$ (choose%), 3%, 3)))
J%=3%+3

until j%>n%

return ans$

The variable CHOOSE% is the one that we have selected at random, and
it's used to select one of the strings of ASCII numbers,
CNAS$(CHOOSE%). We start by using one local variable N% to hold the
total length of the string of digits, and we set another local variable ]%
to one. A local string, ANS$ is also set to a blank — this could use
another name, but it's convenient to keep this name even though it is
passed to another variable of the same name in the playit procedure.

Since each ASCII code number consists of three digits, we want to slice
this string three digits at a time, and this is done in the DO loop that
follows. Starting with J%=1, the string that consists of
CNA$(CHOOSE%) has the first three digits extracted by MID$, then
converted to number form by VAL, then made into a character using
CHR$ and added to the string variable ANS$. This allows the answer
string ANS$ to be built up by using this routine with the value of %,
the starting position for slicing, incremented by three on each pass
through the loop.

If you find an expression like this hard to follow or to construct,
remember that when you have a lot of brackets like this, you read from
the innermost set to the outermost. The loop continues until adding
three to the value of J% results in a number that is greater than the
length of the string which was determined earlier and stored as
variable N%.

That’s the hard work over. The routine then returns ANS$, and this is
an important point. If a procedure is to return a floating point number,
then the name of the procedure can be any name that conforms to the

125



Psion LZ: A Dabhand Guide

rules of eight characters, starting with a letter of the alphabet. If,
however, the procedure returns a string, then the name of the
procedure must be a string name, ending with the § sign. A procedure
that returns an integer should similarly end with the % sign. Note that
the key word here is returns. A procedure can have strings passed to
it, and providing that there is no RETURN line that uses a string, the
name should not be a string name. It’s only when the RETURN line
makes use of a string variable name, such as RETURN KS$, that the name
of the procedure must also carry the string symbol. If you forget this,
you will get the FN Argument Error message when you translate the
procedure.

Dealing with the Details

We now need to supply some data in order to make the program
workable. We need ten strings for array CNM$ and another ten for
array CNA$. These are put in by direct assignment, as part of the main
procedure as illustrated below :

cnm$ (1)="Albania"

cnm$ (2) ="Holland"

cnm$ (3) ="Greece"

cnm$ (4) ="Norway"

cnm$ (5)="Colombia"

cnm$ {6) ="Turkey"

cnm$ (7) ="Malaysia"

cnm$ (8)="Indonesia"

cnm$ (9)="Pakistan"

cnm$ (10)="China"
cna$(1)="076101107"
cna$(2)="071117105108100101114"
cna$(3)="068114097099104109097"
cna$(4)="075114111110101"

cna$ (5)="080101115111"
cna$(6)="076105114097"
cna${7)="082105110103103105116"
cna${8)="082117112105097104"
cna$(9)="082117112101101"
cna$(10)="082101110109105110098105"
rem set variables

126

Menus and Procedures

* Also add to main routine, following the LOCAL line:

global sc%,tr%,done%, cnm$(10,9),cna$(10,24),ans$(10)

The CNM$ strings are the names of the countries, and the CNA$ strings
are the answers, the units of currency, coded as ASCII numbers of three
digits each.

Now there is another procedure to attend to, the scorit procedure
which will be responsible for showing the score in terms of the
number of correct answers and the number of tries. This is illustrated
in program segment below, and is very simple, with no quantities
passed in either direction. The score is printed as a fraction like 4/5,
and there is a short pause following each display of the score.

scorit:
print"Score:",sc%;"/";tr%
pause =30

The following segment is the listing for the instructions, a set of
straightforward message lines.

cls

msg$="You will be shown"
centre: (msg$,1)

msg$="a country name"
centre: (msg$, 2)
msg$="and asked to type"
centre: (msg$, 3)
msg$="the name of its"
centre: (msg$, 4)

pause =50

cls

msg$="currency. Remember"
centre: (msg$, 1)
msg$="the capital letter"
centre: (msg$, 2)
msg$="and spelling. You"
centre: (msg$, 3)
msg$="get two chances."
centre: (msg$, 4)

pause =50

cls

127



Psion LZ: A Dabhand Guide

msg$="The Organiser will"
centre: (msg$,2)
msg$="keep the score"
centre: (msg$, 3)

pause -50

cls

rem instructions

This shows the instruction lines which are placed on the screen four at
a time, using the centre procedure once again. Using centre allows the
line number to be chosen, and is a convenient way of allowing four
lines to be printed, followed by a pause. You could, if you liked, use a
WRITE instruction for this purpose, allowing the instructions to scroll
on one line instead of occupying four lines as shown. That's a matter
of personal preference, and my preference is to take advantage of the
four lines of the LZ machines.

Now you can put it all together, and try it out. Because it has been
designed in sections like this, it’s easy for you to modify the program. I
have deliberately chosen a very simple theme just for this purpose.
You can use different data, for example. You can use a lot more data -
but remember to change the declaration line to suit. You can make it a
question-and-answer game on something entirely different, just by
changing the data and the instructions. You can add some sound
beeps, for example, or add more interesting display effects.

One major fault of the program is that once an item has been used, it
can be picked again, because that's the sort of thing that random
choice can cause — you can even find that the same country is picked
twice or more in succession. You can get round this by swapping the
item that has been picked with the last item (unless it was the last
item), and then cutting down the number that you can pick from.

For example, if you picked number five, you can swap numbers five
and 10, then pick from a total of nine so that the number at the end
cannot be picked. This means that the 1+RND*10 step will become
1+RND*D%, where D% starts at 10 (or whatever number you use), and
is reduced by one (using D%=D%-1) each time a question has been
answered correctly. In this way the game ends when all of the possible

128

=

Menus and Procedures

questions have been answered correctly.

There’s a lot, in fact, that you can do to make this program into
something a lot more interesting. The reason that I have used it as an
example is to show what you can design for yourself at this stage. Take
this as a sort of BASIC ‘construction set’ to re-build any way you like. It
will give you some idea of the sense of achievement that you can get
from working with OPL. As your experience grows, you will then be
able to design programs that are very much longer and more elaborate
than this one by a long way, and move on to more advanced OPL uses.

129



Psion LZ: A Dabhand Guide

130

5 : Filing Techniques &Z

What is a File?

I shall use the word ‘file’ from now on to mean a collection of
information which we can record in the RAM, on a datapack, or by way
of the PC Link on to a disc of another machine. Procedures in the
source code of OPL are one type of file, the type known as ASCII files
because they consist only of ASCII characters. The other type of file is a
binary file, one in which the codes can take a larger range than the
ASCII file type, using numbers from 0 to 255 rather than the usual 32 to
127 of ASCIL If there are problems in the recording or replaying of an
ASCII file, the result is one or two strange characters or blanks in place
of letters, but if a binary file is corrupted it can cause more serious
problems. Many data files that are used by the Organiser and by
programs such as spreadsheets are binary files, coded so as to decrease
the amount of memory that they need to occupy.

In this Chapter, however, I shall use the word ‘file’ in a narrower
sense. I'll take it to mean a collection of data that is separate from an
OPL program. For example, if you have a program that deals with your
household accounts, you would need a file of items and money
amounts. This file is the result of the data-gathering action of the
program, and it preserves these amounts for the next time that you use
the program. By having the program separate from the data, you can
use the same program to work on this month’s accounts as was used
for last month’s, the only difference is that the data is different and it
uses a different filename.

Taking another example, suppose that you devised a program which
was intended to keep a note of your collection of vintage 78 rpm
recordings. The program would require you to enter lots of

131



Psion LZ: A Dabhand Guide

information about these recordings, such as title, artists, catalogue
number, recording company, date of recording, date of issue and so
on.

This information is a file, and at some stage in the program, you would
have to record this file. Why? Because when you load an OPL main
procedure and run it, it starts from scratch. All the information that
you fed into it the last time you used it has gone - unless you recorded
that information separately. This is the topic that we’re dealing with in
this Chapter, recording the information that a program uses. The
shorter word is ‘filing” the information. In this Chapter, we look at the
roots of the subject and at the type of filing that OPL BASIC can carry
out.

The problem is to avoid duplicating effort. The Organiser comes with a
very efficient database program already built into it, and it would be
foolish to put a lot of effort into designing a program of your own that
could have been created much more quickly by using the database of
the Organiser. Programming for yourself is not, or should not be, an
exercise for its own sake, and if a ready-made program exists that does
the work, then it makes good sense to use it rather than to struggle
with something of your own. Be different, by all means, but find a
good reason for being different.

Knowing the Names

You can’t discuss filing without coming across some words which are
always used in connection with filing. The most important of these
words are ‘record’ and ‘field’, illustrated in Figure 5.1.

File of Friends

Record 1:
Field 1: Namel
Field 2: Address la
Field 3: Address 1b
Field 4: Birthday 1
(etc.)

132

Filing Techniques

Record 2:
Field 1: Name2
Field 2: Address2a
Field 3: Address?2b
Field 4: Birthday 2
(etc)

Record 3:
Field 1: Name3
Field 2: Address3a
Field 3: Address 3b
Field 4: Birthday 3

Figure 5.1. The meaning of ‘record” and ‘field’ for a file of data.

A record is a set of facts about one item in the file. For example, if you
have a file about vintage steam locomotives, one of your records might
be used for each locomotive type. Within that record, you might have
wheel formation, designers name, firebox area, working steam
pressure, tractive force... and anything else that’s relevant. Each of
these items is a ‘field’, an item of the group that makes up a record.
Your record might, for example, be the SCOTT class 4-4-0 locomotives.
Every different bit of information about the SCOTT class is a field, the
whole set of fields is a record, and the SCOTT class is just one record in
a file that will include the Gresley Pacifics, the 4-6-0 general purpose
locos, and so on.

Take another example, the file ‘British Motor-bikes’. In this file, BSA is
one record, AJS is another, Norton is another. In each record, you will
have fields. These might be capacity, number of cylinders, bore and
stroke, gear ratios, suspension system, top speed, acceleration... and
whatever else you want to take note of. Filing is fun ~ if you like
arranging things in the right order. The importance of filing is that all
of the information can be recovered very quickly, and that it can be
arranged in any order, or picked out as you choose. If you have a file
on British Motor-bikes, for example, it's easy to get a list of machines
in order of cylinder capacity, or in order of power output, or any other
order you like. You can also ask for a list of all machines under 250 cc,

133



Psion LZ: A Dabhand Guide

which ones used four-speed gearboxes, which were vertical twins,
which were two-strokes. Rearranging lists and picking out items is
something which is a lot less easy when the information exists only on

paper.
Filing in RAM or Datapack

In this book, because we are dealing with OPL and its filing
instructions systems, we’ll ignore anything that you might have
learned from using filing programs on other machines, and I'll explain
filing from scratch in this Chapter. If it’s all familiar to you, please bear
with me until I come to something that you haven’t met before,
because filing on the Organiser is treated in a way that will probably
not be completely familiar to you. For a start, you can forget anything
you have read about the distinctions between serial files and random
access files. These distinctions do not apply to the type of files that OPL
deals with, since OPL files are held in memory at all times.

Creating a File

In OPL, a file has to be created before it can be used using the CREATE
command. In this sense, creating the file means establishing the
filename, a short reference letter for the file, and a list of the types of
fields that will exist in each record. This is the information that is
needed in order to control the file. Whenever a file is created it will be
ready for saving data into, and you can then type the correct variety of
data, save it and close the file. When you next need to use the file you
do not use the CREATE instruction again, because you do not want to
create a new file. The instruction this time is OPEN, meaning that an
existing file is to be made ready for reading or writing.

OPL contains functions that allow a procedure to distinguish whether a
filename belongs to an existing file or not. This allows you to open a
file if the name you type corresponds to an existing file, or create a
new file if the name is a new one. The main thing to avoid is trying to
create a file which has the same name as an existing file, since this will
cause an error message and halt the program. This is considerably

134

Filing Techniques

better than wiping out the existing file, but it can be a nuisance. The
fact that it can be avoided, because filename detection functions exist,
is an excellent feature of OPL.

As always, examples are more useful than descriptions, and since the
manual describes only string filing, a spot of number filing in the
examples might be useful. One point here is that you can design your
own programs so that numbers in files can be worked on, like totalling
the numbers in a set of records. The main database program of the
Organiser concentrates on sorting and finding rather than on
arithmetical work, so that this is an obvious point which makes the use
of filing in OPL worthwhile.

The CREATE instruction of OPL needs to specify a full filename, a single-
letter reference, and the variable names for up to 16 fields. These
variable names can be integer, floating point number or string types,
and their appearance in the CREATE instruction is all the declaration
that you need ~ in particular, you do not have to declare the maximum
number of characters that might exist in a string within a CREATE
instruction. Once the file has been created in this way, values can be
assigned to the field variables, and then the instruction APPEND used
to add each record to the file.

When you have finished adding data, the file can be closed. This can
be done formally, by using a CLOSE instruction, or informally by
ending the filing program. When you are dealing with only one file at
a time, the formal method is not really necessary, but it's better to get
into the habit of closing a file. OPL allows you to juggle with up to four
files at a time, and unless you get into the habit of closing files
correctly you could run into trouble when you try more advanced
work.

pro5xl:
create"a:tstrec",a,num, str$
do

cls

print"Item",

input a.str$

print"value (0 ends)",

135



Psion LZ: A Dabhand Guide

input a.num
append

until a.num=0
close

The listing above (‘pro5x1’) illustrates a simple file being created and
used. In this file, there will be one string and one floating point
number. The string will be used to record the name of an item, and the
floating point number to record its value, so that this is the basis for a
stock-list, a set of records on income, a note of how sales of goods
progressed — any kind of activity in which a name and a number can
be used. The important points to look at are how the fields of each
record are referred to, and how the file is set up.

The CREATE line is:

CREATE"A:TSTREC", A, NUM, STR$

of which the name between the quotes is the filename as it will be
shown by the Dir command of Utilities - note that this filename will
not appear in the Dir list of the Prog action because it is not an OPL file,
it is a data file. The letter A within the filename is used to show that
the file is in RAM, but if you have datapacks in B or C, then these letters
could be used instead. Always use RAM for testing, because once you
have recorded on a datapack, the data cannot be erased easily and you
can quickly fill a pack with unwanted data.

The next part of the CREATE line is the letter A which this time is a
reference letter, a shorthand way of referring to the file. Do not confuse
this with the ‘drive’ letter A:. The purpose of the reference letter (or
‘logical’ name) is to avoid having to use the full filename of A:TSTREC
each time you have to make use of the file. There are four possible
letters that can be used here, A to D, because OPL allows you to have
up to four files in use at the same time.

If you need to open a fifth file, you will have to close an existing one
and re-allocate its reference letter. You can use only one letter at a time
(the ‘current’ file letter), but this letter can be changed, if you have
opened more than one file, by the instruction USE. If, for example, you

136

Filing Techniques

have opened or created A and B files, then you can change from A to B
by the instruction USE B.

The last part of the CREATE line consists of the field names. These are
used like variable names but with the advantage that they do not have
to be declared separately. This is a particular advantage for a string,
because you do not have to declare a maximum length for the string
though you are still restricted to a maximum of 255 characters. You
can use up to sixteen of these field names and they can be any mixture
that you like of floating point, integer and string types, with the names
(no more than eight characters) marked in the usual way as for
variables.

When the CREATE line runs, the file is created and from that point on it
exists in the memory in A:, so that any attempt to create another file of
the same name will meet with a warning that the file already exists.
You can either use another file name, or make use of the RENAME
command to alter the name of the existing file. The remainder of the
procedure is now concerned with supplying data to the file and
recording that data. No variables are required in this process, so that
no LOCAL or GLOBAL declarations are needed in this example -
another bonus point for storing information in this format.

The data is then gathered using a DO loop which will be terminated
when a zero is entered for the number amount. The screen is cleared,
the word Item is printed, and the INPUT step then uses as a variable
name a combination of the shorthand name for the file and the field
name, in the form A.STR$. The important point here is that this
combination can be used just as if it were an ordinary string variable. If
you had other files with reference letters B, C and D you could also
have INPUTS to B.NAMES$, to C.LIST$ or D.title$, assuming that these
field names and their files had been created, and you had a USE line
preceding each change of file.

The program then asks for a value, a floating point number, which is
assigned to A.NUM in the same way. This completes the input of
information for this record, and the following instruction is APPEND,
which adds this record to the end of the current file. If this is the first

137



Psion LZ: A Dabhand Guide

record, of course, the ‘end’ of the file is simply the filename, but
subsequent records are then added to the end of the previous record.
The alternative to APPEND is UPDATE, which will delete whatever
record is currently being used and add your new record to the end of
the file.

Following APPEND, the loop ends with its UNTIL clause, so that
entering a zero for the amount stops the loop. You do not have to enter
any string for the last record, simply press the EXE key. The CLOSE
instruction then closes the file so that no further work can be carried
out on it until it is opened again.

Totalling a File

A file of the type we have looked at could be used in a variety of
different ways. If we only ever wanted to refer to the file, for finding
items and looking at records, then there would have been no point in
using OPL, because the database or Xfiles facilities of the Organiser
would have been more suitable. The point of using OPL is to allow
much more flexibility in the use of files, in particular to allow you to
carry out actions that are not provided for in these built-in programs.
One such action is the totalling of numbers, so that we'll look at this
point before anything else.

pro5x2:
local tot,t%
open "a:itstrec",a,n,sS$
first
do

tot=teot+a.n

tH=t¥+l

next
until eof
print"Total", tot
print"in",t%-1, "records."
close
get

The procedure for recovering and totalling data is illustrated in in the
listing above (‘pro5x2’). This time two local variables have to be

138

Filing Techniques

declared, TOT to hold the floating point total, and T% to count the
number of records, which is the same as the number of different items.
The file is then opened, using:

CPEN "A:TSTREC",A,N,S$

note that only the name of the file need be the same, we can use a
different reference letter and different names for the fields. The fields
must be in the same order, in this example one float and one string, as
they were in the CREATE line.

The next instruction is FIRST, meaning that the first record in the file
should be located. The way that filing operates is to keep a ‘file
pointer’, which is a number for a location in memory, assigned to a
record, and there are several filing commands whose only action is to
move the file pointer. FIRST is one of these instructions, and the others
are LAST, NEXT, and BACK. There is also an instruction POSITION which
will select a record by its number. By using FIRST here, we ensure that
we can look at the whole of the file in order of entry in the DO loop
that follows.

In the DO loop, the number variable TOT has the field A.N added to it
in order to keep a total of all the numbers in the file. The variable T% is
incremented so as to keep a tally of the number of records. Since these
two variables were declared as LOCAL, they will both have started
with zero values; otherwise they would both have had to be
‘initialised’ by assigning them with zero. The NEXT instruction then
selects the next record, and the end of the loop is detected by using
UNTIL EOF, meaning that records will be selected until the end-of-file
code is found.

If there is no test for end of file, the selection process will continue,
simply reading stray garbage from the memory in place of real data.

The quantities are then printed. The total in variable TOT can be
printed as it is, because the last record was the one in which the
entered number was 0, which will not upset the total. This last record
will, however, upset the record count. Therefore the number of records
is decremented so that the displayed number is the number of useful

139



Psion LZ: A Dabhand Guide

records, not counting the last ‘dummy’ record which is used to
terminate the data entry procedure.

Choice of Use

Very often, it can be useful to keep one comparatively simple data-
gathering procedure, but several data-processing procedures, all of
which operate on the same information. We can illustrate this by a
program which makes use of a menu to allow either the creation or
appending of data to a file, along with either the totalling or finding of
data, assuming that a simple file consisting of one number and one
string per record is being used. For the sake of continuity, so that you
can test the procedures on the existing TSTREC file, we will use the
same structure.

The procedures are shown below (‘pro5x3’):

pro5x3:

local m%

do
m%=menu ("ADD, FIND, TOTAL, QUIT")
if m%=0 or m%=4 :stop
elseif m%=1 :opit: :addit:
elseif m%=2 :opit: :findit:
else m%=3 :opit: :totit:
endif

until m%=0

addit:

cls

do
print"Item",
input a.s$§
print"Cost",
input a.n
append
cls

until a.n=0

last

erase

close

140

print"End of entry”
pause 30

findit:

local f£%,s$(20)
print"Type word/phrase”
print"-use wildcard."
input s$

first

f%=findw(s$)

if £%=0

print"Not found"
pause 20

else

f%=disp(-1,"")

endif

close

opit:

local nm$(10),g$ (1)
print"File name please"
input nm$

if not exist (nm$)

print"No file-create{y/n)"

g$=get$

if g$="y" or g$="y"
create nm$,a,n,s$
endif

else open nm$,a,n,s$
endif

totit:
local tot,t%
first
do
tot=tot+a.n
t=t%+1
next
until eof
print"Total", tot
print"in",t%, "records."
close
get

Filing Techniques

141



Psion LZ: A Dabhand Guide

Remember that each procedure must be separately translated and
saved before it can be used. The main procedure uses M% as a local
integer, and in the loop uses this integer to detect the menu choice. The
number that has been selected in this way (see Chapter Four) is then
used to pick procedures. The IF tests have been written in single lines,
using the colon (which must be preceded by one space) to separate
instructions, so that if M%=1, then the machine runs procedure opit
followed by procedure addit. The colon immediately before the
procedure name is the separator, the one immediately following is the
usual colon that is part of the procedure name.

Each main menu action starts by opening a file, and if you were
writing a program to work on one file for some time you would
probably want to organise this differently, with the file being opened
before the menu is used and kept open for all the menu actions. In this
case, however, the idea is that a different file might be used for each
action, and there is no provision for skipping from one action to
another with the same file held open. The menu is designed to operate
in an endless loop (because of the UNTIL M%=0) so that you escape
only by using the QUIT option.

The opit procedure starts with local declarations of a string which will
be used for a file name and another which is for a Y/N answer. You
are asked to type the file name, and this name is assigned to variable
NMS$ - note that this could be a full name like A:tstfil or a part name
like tstfil — in this latter case, the A: RAM memory is used by default.
The name is then tested, using the line:

IF NOT EXIST (NMS)

which will return TRUE if the file does not exist, FALSE if it does. If the
file does not exist, you are asked if you want to create a new file. This
is not done automatically, because you might have mistyped the name
and not wish to create a new file. If you answer with a ‘y’ or ‘Y’ then
CREATE is used with the filename that you supplied. If the file exists,
however, the ELSE section of the test will cause the file to be opened
ready for use, and the procedure ends.

142

Filing Techniques

Procedure opit is used before any of the adding, finding or totalling
procedures s0 as to have a file open, but when finding or totalling are
to be used, there would not be much point in creating a new file.
Nothing in the program makes this impossible, but the Operating
System of OPL will reject the actions on a file which has been created
but not used. See Chapter Six for one way of avoiding this problem.

The addit procedure follows very closely the example given on page
123 (‘pro5x1’), but with a small refinement. This procedure appends
new records, and since every set of records ends with a dummy
record, the file could soon contain a number of these dummy records,
one for each time the ADD option had been used. In the earlier
example, it was assumed that only one dummy existed at the end of
the file, and it was dealt with in the totalling program by subtracting
one from the number of records read from the file. In addit, the LAST
instruction makes the last record the current record, the one that any
following instruction will refer to, and then the ERASE instruction is
used. This will delete this dummy record, ensuring that only valid
records remain in the file, and making it unnecessary to alter the
counted number of records in the totit procedure. This procedure is
very much as in ‘pro5x2’ (Page 126) except that the OPEN line is
omitted, and the number of records no longer needs to be adjusted.

The findit procedure contains more that is new. OPL has two forms of
FIND instruction, of which one requires the name of the item that is to
be found typed in full. In this example, we have opted for the other
form which will accept a ‘wildcard’, meaning that part of a name can
be omitted and replaced by the ' sign or the ‘+' sign. The ‘+ sign
will substitute for one character only, the “* sign for any number of
characters. At the INPUT S$ stage, then, you have to type a name and
this name must include ™ or ‘+’ characters. This is an important point,
because if the name does not include these characters, then even if you
type the name correctly you may find that you do not find the record.
Typing a name such as on* will get names such as one, only, ondine
and so on. The FIRST instruction is used to get to the start of the file,
though this is strictly speaking not necessary. When the FINDW
mnstruction is used, it returns a number in F% which will be zero if the

143



Psion LZ: A Dabhand Guide

string could not be found, but will otherwise be the number of the
record. This does not need to be used in this example, because the
FINDW action also makes this record the current record so that it can be
printed.

The fact that zero is returned for a string that cannot be found allows
for a test to be made, and a phrase printed if this happens, otherwise
the record that has been found will be displayed. To display the
record, this procedure makes use of the DISP instruction which exists
in three forms according to the first number within the brackets, which
can be -1, 0 or +1.

When -1 is used, as it is here, the string that follows the number inside
the brackets is ignored, and the current record is printed, using one
line for each field. The cursor up and down keys can be used to move
the cursor over different parts of the record, and the display continues
until another key is pressed. When DISP is used with the number +1,
the string within the brackets is displayed, and any TAB characters
(ASCII 9) cause a new line to be taken on the screen. When the number
is 0, the string is ignored and whatever was previously displayed with
DISP continues to appear on the screen. The cursor keys operate in the
usual way, but any other key will cause the ASCII code for that key to
be returned.

In this case, DISP(-1, “”) causes the record to be displayed, and
pressing any key ends the procedure. By using DISP, it is not necessary
to design PRINT lines, nor to use GET to give time for the display to be
read. The manual shows an example of DISP used in a loop that will
allow the procedure to move on only when a specific key is used, and
warns against using PRINT or any other screen printing instruction
between the use of DISP with +1 or -1 and its use with 0.

Other Selections

You might wish to create a file in which each record held a date. This
would make it reasonable to wish to see a total of the numbers in the
file for a specified time interval, perhaps between 010180 and 010190.
OPL allows you to program for this type of action with its

144

Filing Techniques

comprehensive calendar facilities, which are dealt with in more detail
in Chapter Six. For the moment, we'll look only at what is needed to
create and use records so that dates are incorporated and used for
locating records.

The following listing (‘pro5x4’} is a simple file creating program:

pro5x4:
local ds$(8)
create"clnd",a,dt$, csh
do
do
print"Entry date as"
print"ddmmyyyy",
input d$
until len(d$)=8
a.dt5=d$
print"Amount"”,
input a.esh
append
until a.csh=0
last
erase
close

This shows a simple file creating program in which dates can be
entered along with a number (cash received on that date, perhaps).
This is a very simple procedure, in which there is virtually no testing
of the date that is being entered, so that you could quite easily enter
31021989 as a date without challenge. This point of data validation will
be tackled in Chapter Six, and for the moment only the bare minimum
of checking will be used so as to keep the examples short. A file called
CLND is created - the file will be in RAM A: because no ‘drive’ letter
has been used, and its fields are just one string for data and one float
for, perhaps, a cash amount.

The main loop starts, and then an inner loop runs in which the current
date is assigned to variable D$ and tested to make sure it has the
correct length. Assuming that the date has been entered as
ddmmyyyy, D$ should contain a total of eight characters. The entry
will have to be repeated if eight characters have not been entered. This

145



Psion LZ: A Dabhand Guide

date string is then assigned to field A.DT$, and the number quantity is
asked for. Once this has been input the record is appended in the usual
way, with the outer loop ending when the number is zero — this will
require the entry of a dummy date like 00000000. This last record is
erased at the end of the program, so that whatever is entered is never
used in any case.

Now it may be that you would prefer to enter dates in other forms, or
to have better validation, but all of these things require a lot of
programming and a lot of time to sort out. The whole point of using a
hand-held machine like the Organiser is to be able to use short and fast
routines, with the minimum of effort, even if this means that you have
to be more careful.

No program is foolproof, and a lot of effort spent in validating data is
certainly worthwhile if the program is to be used by anyone else. In
this case, however, you are the user of the Organiser and the writer of
the program, and it's up to you to decide how much foolproofing you
need, if any.

This little procedure will write a set of records that contain the date in
the form of a string, and a number which might be a cash sum. Note
that the routine requires you to enter a date, so that this can be used
for ‘historical’ entries. If each entry needs to carry the date on which it
is made, then you do not need a date to be entered because the built-in
clock/calendar of the Organiser can be used to provide a date, using
the DATIM$ function. This format, however, is not nearly so convenient
for our purposes, because in order to use the reading program, we
need to have the date in the form of numbers for day, month and year.
This is better done by using the DAY, MONTH and YEAR functions, and
either recording these numbers or combining them into a string and
then recording them.

Now to try a method of extracting data between given dates. The key
to this is the function DAYS(D%,M%,Y %) which will return a number
for any given date. The number is the number of days since January
Ist, 1900, so that these date functions are not useful to you if your
needs are for historical records before 1900. By converting each date

146

Filing Techniques

into a unique integer, we can test each record to find its date number
and sum the numbers only in the records that fall into the limits of
time that we have set.

The procedure is shown in below (‘pro5x5’):

proS5x5:

local d%,m%, y%,n%, x%,z%, tot, num%
print"Start date as"
print"day number",

input d%

print"month number”,

input m%

print"year number-4 digits"
input v%

x%=days (d%, m¥%, y%)

print"End date as"
print"day number”,

input d%
print"month number",
input m%
print"year-4 digits"
input v%

z%=days (d%,m%, y%)
open "clnd",a,dt$,csh
first
tot=0 :num%=0
do
d%=val (left$(a.dt$,2))
m%=val (mid$ (a.dt$, 3,2))
y¥=val (right$ (a.dt$,4))
n%=days (d%, m%, y%)
if n%>=x% and n%<=z%
tot=tot+a.csh
num¥=num%+1
endif
next
until eof
print"Total", tot
print num%, "records"
print"between these dates"
get

147



Psion LZ: A Dabhand Guide

For both the start date and the end date, the procedure prompts for the
entry of a day number, a month number and a year number, and the
DAYS function is used to find the day integer. For the start date this is
X% and for the end date it is Z%. Once again, there is no checking to
find if, for example, Z% is greater than X% as it ought to be. The
actions of entering the numbers should really be consigned to another
procedure, so that the day integer could be returned from this
procedure rather than having the entry lines repeated as they are here.

When the starting date number X% and the ending date number Z%
have been calculated, the next step is to open the file that contains the
records. The first record is selected and the numbers that will be used
for counting are zeroed. The main loop then starts. In this loop, the
numbers for day, month and year are extracted from the date string in
the record by using LEFT$, MID$ and RIGHTS$ for extraction and VAL to
convert from string form to number form. These number variables are
once again used in a DAYS function to get the number N% for that
particular date. This number can now be tested - it should be greater
than (or equal to) the first date number and also less than (or equal to)
the last date number. If it is, then the number in the record is added to
variable TOT and the number of records tally is incremented. The next
record is selected, and the loop repeats until the end of the file is
found.

Changing a Record

It’s not difficult to find how to alter a record in a file. You read the
item, print it on screen, and then change the item before re-recording it
into the file. As in so many other ways, OPL assists in this process by
having a function that is specifically intended for this purpose. The
function is EDIT, and it can be used on a string either in variable form
or as a record field. Note, however, that this operates on strings only,
and this is a good argument for keeping all data that needs to be
edited in string form. If actions such as number-totalling are needed,
after all, each number can be obtained from the string by using VAL.

Here is an illustration of EDIT in use (‘pro5x6'):

148

Filing Techniques

proS5x6:
open"tstrec”",a,n, s$
edit a.s$

update

close

An existing file is opened — normally you would input the name of a
file and test to find if it existed. The file contains a string and a
number, and the string is then edited using the EDIT A.S$ instruction.
This presents the contents of the string on the screen, with the cursor
on the first letter, so that you can make use of the normal editing
methods to change this word. When the EXE key is pressed, this new
value of A.S$ exists, but it will not be passed back to the file unless the
UPDATE instruction is used. Once this has been executed, the file will
be altered to reflect the change to this record. You can see the effect of
the alteration by using the procedures in the listing given on page 127
(‘pro5x3’).

If the number has to be altered, editing is less appropriate because the
number can be changed using lines such as:

PRINT "New number"
INPUT a.n

which could be used following the EDIT instruction and followed by
the UPDATE instruction. Nothing in the file is altered until the UPDATE
instruction has been carried out. EDIT is intended to allow you to make
changes in a string, such as the correction of spelling mistakes, without
the need to input the whole of the string again. This type of editing is
not needed for a number entry.

Data File Work

One point that has emerged is that the data files which are created by
any data filing program in OPL are not listed by the Dir command in
the Prog menu. As it happens, you can get a list of your data files from
the Utilities menu, but it can be handy to have this facility available in
your data-handling programs, such as the skeleton program of
‘pro5x4’. OPL offers several functions that make it possible to trace

149



Psion LZ: A Dabhand Guide

your files by writing procedures that can be added to the menu of any
such program.

The next listing (‘pro5x7’) illustrates this with a procedure that lists the
data files that are present in a given ‘drive’, in this example the A:
drive.

proSx7:

local d$(10)

d$=dizr$("a:")

print d$

do
dé$=dirs("")
if d$<>m"
print d$
endif

until d$=""

get

The local variable D$ is declared large enough to hold a file name and
the instruction:

D$=DIRS ("A:")
is executed. This will return with the name of the first data file, usually
MAIN, in the A: drive. Subsequent files can now be read in a loop,
using a blank string in the DIR$ brackets, and the loop end can be
detected by the fact that D$ will be blank when no more files remain.
The file names are also printed in the loop, and an IF test avoids the
printing of the last blank value of D$ by testing for this.

The next step is to develop this with another procedure that can be
added so that the number of records in each file will be read. The
listing below (‘pro5x8’) shows the alterations that are needed.

pro5x8:
local d$(10}),n%
d$=dir$("a:")
print d$,
n%=recrd: (d$)
print n%
do

d$=dirs ("")

150

Filing Techniques

if ds<>"
print d§,
n¥%=recrd: (d$)
print n%
endif

until ds=""

get

recrd: (d$)

local c%

open d$,b,n,s$

c%=count

close

return c%

An integer variable is added to the LOCAL list, to be used for holding
the number of records per file. Following the printing step, the comma
holds printing in the same line, and a procedure call to recrd gets the
number of records corresponding to the file whose name is stored as
the string variable D$. This is done once again in the loop, completing
the alterations to the main procedure.

The procedure recrd is also shown. The name of the file is passed to it
as D$, and the same variable name has been used in the procedure,
along with a local C% for the number of records. The file is opened
(you need to know the form of the file in order to be able to specify the
correct type and number of fields), and the line:

C%=COUNT

will count the number of records in the field, assuming that the file is
of the format described in the OPEN instruction. The file is then closed,
and the number stored as C% is returned to the calling procedure.

The procedure for listing the files is universally useful, but the record
counting method is not. If a file contains more records than is allowed
for in the OPEN instruction in recrd then the system falls down, so that
the counting of records has to be done with care.

It is quite possible that all of your data files will use the same record
structure, in which case this procedure can be useful to you, but if this
is not so, then the use of this procedure should be confined to

151



Psion LZ: A Dabhand Guide

programs that are intended to handle a specific type of file.

Statistical Work with Files

The Organiser possesses a splendid set of statistical functions, the list
functions, and one of the minor drawbacks of OPL is that these list
functions cannot be used directly on file fields, only on the contents of
listed variables or on floating point arrays. These functions are so
useful for the type of work that the Organiser is used for that ways of
making use of list functions with files are of considerable practical
interest. The technique consists of reading the files into an array and
then using the list functions on the array.

Suppose, for example, that we want to find the average and standard
deviation of a set of classmarks, a set of measurements on goods-
inwards, or a set of readings taken of goods-outwards. The
measurements have to be made at one time, the statistical work at
another, so that one procedure reads the figures, another one analyses
the results. In practice, of course, one main procedure with a menu
would call up whatever else was to be used. For this simpler example,
the following listing (‘pro5x9’) illustrates the data gathering portion,
which stores the numbers in float form even if integers are used.

prob5x9:
local n%
if not exist ("marks")
create"marks",a,nam$, mrk
else
open "marks",a,nam$,mrk
endif
cls
print"Zero to end"
n%=0
do
print"Name",
input a.nam$
print"Mark",
input a.mrk
append
print chr$(15)

152

Filing Techniques

print chr$(22)
at 1,2
until a.mrk=0
last
erase
n¥=count
cls
print n%,"entries.”
close

This program has started in the conventional way, using an IF NOT
EXIST test to create or open a file with the name MARKS, consisting of a
string and a float. The screen is cleared and the phrase “Zero to end’ is
printed as a reminder that entering a zero will end the input. This
phrase will remain on screen, with only the lines that have been used
for entering data cleared on each entry. In the loop, the name is
requested and assigned to the string field as usual, and the number is
assigned to the number field.

Once the data has been appended to the file, the second and third lines
of the screen are cleared by the PRINT CHR$(15) and PRINT CHR$(22)
commands respectively. The cursor then has to be replaced on the
second line ready for the next input, and this is done using the AT
instruction. The loop continues in the usual way until a zero is entered
for the number, and then the last record is erased and the number of
records counted and displayed. The file is then closed.

Now to make use of the numbers that have been entered, as distinct
from printing names and numbers, or finding records, we need to read
the numbers into a floating point array in order to make use of the
statistical list functions. This is illustrated in the next listing (‘pro5x10°)
which, shows the full range of these list functions used.

pro5x10:
local x(100),n%
open"marks",a,s$,n

first

n¥=1

do
x{n%)=a.n
n%=n%+1

153



Psion LZ: A Dabhand Guide

next
until eof
cls
n%=n%-1
print n%, "marks"
print"Average",mean (x () ,n%)
print"Max.",max(x(),n%)
print"Min.", min(x(),n%)
get
cls
print"s.D.",std(x(),n%)
print"Sum", sum(x(},n%)
print"var.",var(x(),n%)
get

One problem is the size of the array. There is no way of knowing in
advance how many records may be stored in a file, so that we cannot
know how to dimension the array. One solution that looks attractive is
to make use of the number N% which has been obtained in listing
‘pro5x9” (page 138) as the record count. If the reading routine could
make use of this number, passed to it in the procedure name, then it
might be possible to use this to dimension the array.

Unfortunately, the LOCAL instruction accepts only numbers for array
sizes, not variables, and the procedure will not translate. The only way
that this number can be used, then, is to print a warning that too many
records exist to deal with.

Some practical experience, however, helps here. If the routine is being
used for classmarks, we should have some idea of the maximum
possible number, and the same should be true for the number of goods-
inwards or goods-outwards that can be tested in a day, the number of
complaints about the service, and so on.

This ought to allow the array to be dimensioned generously enough so
as to be most unlikely to fail to accommodate the number of records
that will be read ~ and we can still pass in the number N% to print a
warning if this should not be the case.

The procedure shown above (‘pro5x10’) declares an array of 100
floating point numbers, along with a variable N% for counting them

154

Filing Techniques

in. The file is opened, and set to the first record, with the counter N%
set to unity - this is important because N% will be used as the array
subscript number, and OPL, unlike most versions of BASIC, does not
allow an array member such as X(0); the first member of the array
must be X(1). The main DO loop then starts, assigning the value from
the record field to the array member, incrementing the value of N%
and selecting the next record. This is done until the end of file
character is read. The value of N% then has to be decremented, as it
will have been incremented after reading the end of file character.

The screen is then cleared, and the list functions are used to work on
the array. The value of N% is used to show the number of items, and
then the average (mean), maximum, minimum are printed. This is
followed by a GET to keep these values on screen for reading, and then
pressing any key allows the screen to be cleared so that the standard
deviation, sum and variance figures can be printed. This ends the
procedure.

Last Word

The file handling of OPL allows for very rapid processing, because it is
all done in the memory unlike disc-bound programs on desk-top
computers. This chapter should have demonstrated how the built-in
data processing abilities of the Organiser can be extended by
comparatively short and simple routines written in OPL. These
routines can process numerical data particularly well, and in this sense
are considerably superior to the routines in the database, though large
data processing programs for desktop machines are usually well
equipped also for numerical processing.

155



Psion LZ: A Dabhand Guide

156

6 : Finishing Touches &Z

OPL is a well-designed and very comprehensive programming
language which is designed specifically for the Organiser, and the
version of OPL which is used on the LZ machines is a more advanced
version of the original OPL which allows better use to be made of the
screen. In this Chapter, we shall look at an assorted set of OPL
instructions which have not so far been required in examples. Some of
these are ‘bell and whistles’ instructions which though sometimes
useful are not essential for programming. Others are for more
specialised applications and will not be used by the majority of
Organiser owners, and some are sets of instructions of which a few
have been illustrated along with brief explanations of the others. One
such set is the date set.

The Date Functions

Of the date functions, one of the most important is DAYS(D%,M%,Y %)
which is used to find the date number, the number of elapsed days
since January 1st 1900. This is an integer number and one of its main
uses, previously illustrated, is to find the number of days between two
dates by subtracting one date number from another. The other date
functions fall into two classes, the functions which return a string for
names of days and months, and those which return a number. In
addition, some functions operate only on the current date, as supplied
by the built-in clock of the Organiser, others act to convert a date
which is supplied in number or in string form.

The DATIM$ function, along with the SECOND, MINUTE, HOUR, DAY,
MONTH and YEAR functions, are used to display quantities which are
obtained from the built-in clock. The form of use is illustrated in the
following listing (‘pro6x1’), with the quantities being printed rather

157



Psion LZ: A Dabhand Guide

than being assigned:

pro6xl:

print datim$

get

cls

print"Year", year
print"Month",month
print"Day",déy
print"Hour", hour
pause =50
print"Minute”,minute
print"Second"”, second
get

The DATIM$ takes more than one line to print if you use the instruction
PRINT DATIM$ as here, so that it is better to use it along with the VIEW
instruction, allowing the string to scroll sideways. Since the format is a
string, DATIM$ can be assigned to any declared string variable so that
it can then be sliced as required - slicing is not a simple task because
the names of days and months are not all of the same length and a
slicing action requires the use of a DO loop, adding characters in turn
to another string until a space is found. This sounds tedious, and the
reason it has not been illustrated is that OPL contains functions that
make such contortions unnecessary.

DATIMS is a useful way of getting a printed version of the date and
time, but for many purposes, reading these quantities as numbers can
be more useful. The instructions that bear the names of date and time
units will each return an integer, and in the listing above they have
been used to print the number beside a piece of text that shows which
number is being printed.

Working with time and date numbers is considerably simpler than
working with strings because each number is an integer. This makes it
easier to calculate elapsed time, for example, because you cannot
subtract one time in string form from another but you can subtract one
integer from another.

The next listing (‘pro6x2’) illustrates this principle with a procedure

158

Finishing Touches

which will tell you how many hours and minutes you have to work
until 5.00 p.m. - it does have more serious applications, though.

figéx2:

local h¥%,m%
h%=hour

m%=minute

if h%>=17

print"You are late"
stop

else h%=17-h%
endif

if m%<>0

mE=60-m%

h%=h%-1

endif

print h%;"h ";m%;"min. to go.™
get

The procedure starts by obtaining the hour and minute numbers from
the built-in clock, which uses hour numbers 0 to 24, and assigning
these numbers to variables H% and M% respectively. The H% number
is tested so that if the time is later or equal to 17 hours, it's too late to
ask how long you have to wait. If the hour is earlier, then the
expression 17-H% gets the number of whole hours that you need to
wait. This number will be one hour too much if the number of minutes
is not zero, however.

The second IF test checks for the number of minutes. If this is zero,
then the hours and minutes are printed just as they are, but if the
minutes figure is not zero then the hour figure is reduced by one and
the minutes figure is subtracted from 60 to find the number of minutes
to the next hour. With the revised figures of H% and M% now
processed, the required time is printed in a single line.

Day and Week

OPL provides a pair of useful functions which will find day and week
information in number form from the date also in number form. If this
sounds rather puzzling, then look at the following listing (‘pro6x3’):

159



Psion LZ: A Dabhand Guide

proéx3:
local d$(6),d%,m%,y%
print"Please enter date"
print”"as ddmmyy"
do
input d$
if len(dS)=6
break
else
print"Incorrect-use ddmmyy"
endif
until d%
d%=val (left$(d$,2))
m¥=val (mid$ (d$, 3,2))
y%=1900+val (right$(ds,2))
cls
print"Week No. is",
print week (d%, m%, y%)
print"Day No. is",
print dow (d%,m%, y%)
get

The date is requested from you in the form ddmmyy, such as 060789
or 121090, and this is assigned as a string so that it can be sliced. As
before, only minimal testing of the string is used, enough to ensure
that only six characters are typed. This is done with a DO loop in which
the test:

IF LEN(D$)=6
BREAK

is used. This ensures that when the correct length of string has been
typed the loop is broken without any need to use the UNTIL test. This
test uses D%, a variable that has not been assigned.

With D% unassigned, its value is zero, which the computer takes in an
UNTIL test to mean FALSE, so that this is a way of ensuring that the
loop is endless until the BREAK instruction is executed. This is a neater
way of creating the loop than the use of a GOTO. The ELSE part of the
test will print a message if the entry has been of an incorrect length,
like 1190.

160

Finishing Touches

The slicing is then done, using VAL to convert to day, month and year
integers, with 1900 being added to the two digits for the year so as to
get the correct Y% number. If you are using this program beyond the
year 2000 then you will have to adjust this (after all, the Organiser is a
reliable and long-lived machine). The WEEK function is then used with
the quantities D%, M% and Y% to get the week number in the range
one to 52, and the DOW (Day Of Week) function is used to get the day
number in the range one to seven, with Monday=1. The main problem
is that you more often need to know what is the date of day one in a
specified week number, like week 27, and there is no OPL function, nor
any quick and simple procedure that will find this.

There are two other date functions, DAYNAME$ and MONTHS$, which
will take a day or month number and convert it to the name of the
respective day or month, returning a string. These allow you to
convert dates in DDMMYY form to a more civilised name form which
can be printed by the VIEW instruction, as this program (‘pro6x4’)
illustrates:

pro6x4:

local d$(6),k$(25),d%,da%, m%, y%
print"Date as ddmmyy"

input d$

if len{d$)<>6

print"Bad date -"

print"program ending"

pause -30

stop

endif

di=val (left$(ds,2))
m¥=val (mid$ (d$,3,2))
y%=1900+val (right$ (d$, 2})
da%=dow (d%, m%, y%)
k$=dayname$ (da%) +" "+£fix5(d%,0,2)+" "
+month$ (m%)}+", "+£ix$(y%,0,4)
view(2,k$)

The date is typed in using the usual DDMMYY format, and this is
assigned to a string variable as before, though the testing is of a
different form this time. The string is sliced as before to give integer

161



Psion LZ: A Dabhand Guide

numbers for the day, month and year, and the DOW function is used to
find the day of the week number for that day as integer variable DA%.
A long string K$ is now packed with the information that is needed.

The string starts with the name of the day, obtained by using
DAYNAMES$ on the day of week number. This is followed by a space
and then the number itself converted into string form by using FIX$.
FIX$ requires the number to be converted, the number of decimal
places, and the total number of characters to be supplied within the
brackets. In this case, no decimal places are needed, and the length is
two characters. After another space, the month name is obtained by
using MONTH$ on the month number M%, and following another
space, the year number is printed using FIX$ again but with four
characters specified this time. The whole string is then printed using
VIEW - scrolling will take place only when the day name and the
month name are both long,.

Error Trapping

The normal routines of OPL will stop a program when an error is
detected, displaying an error message. In most cases, when errors are
programming errors or logical errors, this should prompt you to
correct the fault that is causing the error, but some errors are
unavoidable. If you opt to read a file, for example, and the file does not
exist then this constitutes an error which will stop the program from
running. This type of error is so likely to occur that OPL, in common
with several other varieties of BASIC, provides the EXIST test so that a
procedure can check whether or not a file exists before trying to open
it.

Sometimes this automatic attention to errors can cause problems
which are very difficult to avoid by careful programming. This is
something that has to be emphasised, because all but a very few errors
should be eliminated by good program design. What I mean here by
the few remaining errors are errors which arise from something that is
typed by the user as an input and which is difficult to check within the
program. Clearly, the existence of a file does not come under this

162

Finishing Touches

heading so that the problem concerns items like impossible dates (like
310289), trying to open a file that is already open, or attempting to
assign too many members of an array. For this sort of contingency, OPL
allows for the trapping of errors so that a special error routine runs,
with the normal error routines being bypassed.

This bypassing of normal error routines should be done only in
exceptional circumstances, and should certainly not be a part of every
procedure or set of procedures. One considerable danger is that a
program could develop an endless loop if the new error routine did
not deal with an unsuspected error. The error would cause the error
routine to be called which could not deal with it, and would return to
the program, which would then detect the error again and call the
error routine, and so on endlessly. The other source of an endless loop
is an error routine which itself contains an error. This type of problem
can be avoided by ensuring that error trapping is removed whenever
an error has been trapped. The most important point is to ensure that a
‘Low Battery’ error is not ignored nor diverted.

The error routines of OPL fall into two classes. The first set is based on
the ONERR instruction, which will be followed by a label name. An
instruction such as: ONERR routine:: is equivalent to ON ERROR GOTO
routine::, so that when any error is detected, the routine which starts at
the label name is run. There are three important rules regarding this
routine:

1) It should start with the ONERR OFF instruction to disable any
further error trapping (what if there is an error in the error
routine?).

2) Itshould specifically detect and report error number 194, the Low
Battery error.

3) Itshould be able to deal with any type of error that might arise.

The last point is important, because if the error routine is aimed to
detect and provide for just one form of error, then operating this
routine when another type of error is detected might itself cause an
error. OPL uses the function ERR which will return a different code

163



Psion LZ: A Dabhand Guide

number for each type of error, allowing you to discriminate between
errors.

Using error detection can lead to some interesting problems. The next
program listing (‘pro6x5’) shows a routine which is intended to solve a
common problem.

pro6x5:

local a$(6),x
onerr fixit::
startit::
print"Enter number"
input a$
x=100/val (as)
print x

get

stop

fixit::

cnerr off
print"Not number"
pause 50

cls

goto startit::

The program accepts a number in string form, and this number is later
used in a division. There are two possible errors. One is that the string
you give cannot be converted to a number. This occurs if you forget to
switch to number entry or if nothing is entered (ie, the EXE key is
pressed without an entry).

The other error is caused by 0 being entered. This is because you can’t
divide anything by zero. The program contains the line ONERR FIXIT::
which will cause any error to make a diversion to the routine that
starts at label FIXIT, situated beyond the end of the program. In this
routine, error trapping is turned off, a message is printed, then after a
pause the screen is cleared and execution returns to the place where a
number can be entered so that you can get it right this time.

Now if you try this out, you will find that it works — but only for the
first error. If you make a mistake on the second attempt then you will
see the STR TO NUM ERROR message appear because the conversion

164

Finishing Touches

using VAL could not be done (this applies to the blank string as well as
to a string of letters). If the second error is due to entering a zero, you
will get the DIVIDE BY ZERO error message. The reason for the trapping
being done once only is that the return is to label STARTIT::, and this
has been placed following the ONERR step. In the error-handling
routine, ONERR OFF has cancelled the error reporting in case of other
errors in the error routine, and because of the positioning of the
STARTIT:: label, trapping has not been restored for the second attempt.
This is dealt with by shifting the position of the label name.

You will find, however, that if you enter the zero, which is, after all, a
valid number, that you get the message ‘Not Number’ from your own
error routine, because all errors are being dealt with by the same
routine. In this case, the remedy is simple — change the message to
‘Unacceptable Entry’.

Error trapping like this is a powerful way of dealing with problems,
but it should not be written in to a program until all of the procedures
have been extensively tested so as to eliminate as far as possible any
other errors. This does not mean that error trapping should be tacked
on to a program in an unplanned way, only that the actual routines
should not be added until the program is known to run well
otherwise.

Error trapping must never be used as a substitute for good planning,
because the ease with which an error trapping routine can get into an
endless loop makes good planning essential.

On other machines, endless loops are simple to deal with — you switch
off. On the Organiser, however, switching off is no remedy, because
the loop will still be there when you switch on again, and the ultimate
remedy of disconnecting the battery will result in the total loss of all
data that is held in the Organiser.

Testing for error type is done by using the ERR function, which returns
a number, and you can also use ERR$ which gives the standard error
message for each error type, as it would appear on the screen of the
Organiser.

165



Psion LZ: A Dabhand Guide

pPro6x6:

local a$(6),x
startit::

onerr fixit::
print"Enter number"
input a$
%=100/val{a$)
raise 194

print x

get

stop

fixit::

onerr off

if err=194

raise err

elseif err=252
print"Not number"
elseif err=251
print"Zero unacceptable”
endif

pause 50

cls

goto startit::

The above listing (‘pro6x6’) shows a re-designed version of the
procedure of the previous one, with the type of error detected, and an
additional trap for the Low Battery error. Looking at the error routine
of this example, the ONERR OFF is followed by a test for the Low
Battery error, using IF ERR = 194 - the list of error numbers is at the
end of the OPL programming manual. This is followed by the new
instruction, RAISE ERR. The effect of RAISE followed by an error
number is to invoke the normal error handling routine of OPL for that
error, so that RAISE 194 would stop the program and print the Low
Battery warning.

The ELSEIF clauses then deal differently with the two known types of
error that can occur here. Error number 252 is caused by VAL operating
on a string that does not contain a number, and the report for this is
‘Not number’. Error number 251 is a divide by zero error, which will
arise when the division step is encountered, and this is dealt with by a
different message. Following the ENDIF, the usual pause and screen

166

Finishing Touches

clear is done, and the program then returns to the point where error
trapping is turned on again. If, as happens in some routines, this could
not be done because the return should be to a later point in the
procedure, the ONERR FIXIT:: instruction could be placed as the last
step in the error handling routine before the GOTO LABEL:: step.

There is another use of RAISE which allows for better testing of
routines like this. Some errors are not easy to obtain, and the most
obvious one is the Low Battery error, since it’s hardly feasible to run a
battery down in order to test a routine. By putting RAISE 194 into some
part of the procedure, anywhere following the ONERR step, the effect
of this error can be simulated, and you can see how your program will
deal with it. The effect ought to be to give the error report, end the
program, and give you a chance to Edit — though the correct course is
to shut down and change the battery in this particular case. Any
program that uses error trapping should be tested with RAISE 194
because the effects of not getting this error reported are so serious for
an Organiser.

The other error trapping method of OPL uses the keyword TRAP along
with one of a limited set of commands, most of which are concerned
with files, but also including INPUT. The full list is:

APPEND BACK CLOSE
COPrY COPYW CREATE
DELETE DELETEW ERASE
EDIT FIRST INPUT
LAST NEXT OPEN
POSITION RENAME UPDATE
USE

and this inclusion of INPUT allows for the trapping of the main cause
of errors - incorrect input types. TRAP is typed immediately before the
instruction that it refers to, and its effect is to allow the next line to be
executed as if no error had occurred. This means that the following
line must be an IF test that will detect and deal with the error, and the
manual gives an example of a routine that will detect when a string
entry is made in place of an integer number. This is not a fatal error in

167



Psion LZ: A Dabhand Guide

the sense that it would stop the program running, because the normal
routine of OPL in this case is to prompt for the correct entry, but
without any message of explanation. By using the TRAP routine, an
explanation can be put in to help an uncertain user.

One very common problem in filing programs is to devise a menu
system that allows for various actions — but to ensure that the files are
open before a file action is called for. In the examples of Chapter Five,
a typical menu would lead to various procedures being run, each
preceded by the opit procedure to open the file. This meant that the
file had to be closed at the end of each procedure, otherwise running
another menu choice on the same file would lead to an error - trying
to open a file that was already open.

This is an excellent illustration of how useful TRAP can be, because in
such a menu it can be very awkward to have to open and close files,
particularly when the filename has to be specified again for each
opening. If you want to open a file and then work on it with various
menu choices, but still preserve the ability to start with any one of the
choices, then you need to have the file opening procedure in each
menu choice, but trap the ‘File open’ error.

The listing below (‘pro6x7’) shows an earlier procedure set, from
‘pro5x3’, amended in this way.

Prob6x7:

local m%

global nm$(10)

do
m%=menu ("ADD, FIND, TOTAL, QUIT")
if m%=0 or m%=4 :close :stop
elseif mi=1 :opit: :addit:
elself m%=2 :opit: :findit:
else m¥=3 :iopit: :totit:
endif

until m%=0

findit:

local f%,s$(20)

print"Type word/phrase"

print"-use wildcard."

input s$

168

first
f%=findw(s5)

if £%=0
print"Not found"
pause 20

else
f%=disp(-1,"")
endif

addit:

cls

do
print"Item",
input a.s$
print"Cost",
input a.n
append
cls

until a.n=0

last

erase

print"End of entry"

pause 30

totit:
local tot,t%
first
do
tot=tot+a.n
t¥=t%+1
next
until eof
print”Total", tot

print™in",t%, "records."”

get

opit:

local g$(1)
1f nmS<>""
goto endit::
endif

print"File name please”

input nm$

Finishing Touches

169



Psion LZ: A Dabhand Guide

if not exist (nm$)

print"No file-create(y/n)"
g$=get$

if g$="y" or g$="¥y"

create nm$,a,n,s$

endif

else trap open nm$,a,n,s$
if err=199

print"in use™

pause 20

endif

endif

endit::

The OPEN instruction has been amended to TRAP OPEN, and is
followed by a test for error number 199 for FILE IN USE. If this error
number has occurred, the message is printed, but the action is allowed
to continue. The chance of the error occurring, however, is remote
because in the main routine, the name variable NM$ has been made
global, so that this can be tested in the opit routine. If the name exists,
it is because opit has already been run and this file will be used — this
is an example of not relying on an error trap for detecting a possible
problem. You might like to alter the opit routine so that it gives you
the chance of using either the existing open file or a new file. The
existing file should be closed before the new file is opened.

TRAP, unlike ONERR, carries no risk of causing endless loops or of
covering up battery failure, because TRAP applies only to a limited list
of inputs. Before we leave the topic, however, it's useful to look at a
routine (‘pro6x8’), as listed below, which will avoid problems with
date entry, and which illustrates an important point about error

trapping.

prob6x8:

global dt$(6)

onerr catch::

entry::

print"Enter date ddmmyy"
input dt$

datit:

get

170

Finishing Touches

stop

catch::

onerr off

if err=194 :railse err :endif
if err=247
print"Impossible date"
print"- try again."

pause 20

onerr catch::

goto entry::

endif

datit:

local d%,m%, y%, x%

d%=val (left$ (dt$§, 2))
m%=val (mid$ (dt$,3,2))
y%=1900+val (right$ (dt$,2))
X%=dow {d%, m%, v%)

So far, when we have entered a date in DDMMYY form, there has been
no way of determining if the entry was sensible. This is important
because an invalid date applied to a date function will cause an error
which will halt the program. The error is FN ARGUMENT, error number
247. If this is detected, the message is printed, error trapping is turned
on again, and the GOTO takes control back to the entry point. The date
string DT$ is made a global variable to make it easier to transfer to the
date testing routine, datit which in this example exists only for the
purpose of validating the date.

The other important point is that the ONERR line is in the main
procedure, but the error occurs in the procedure datit which is called
by the main procedure. Placing an error trap in any procedure affects
error trapping everywhere from the time that the ONERR line is
executed.

It is not something that is specific to a procedure like a local variable.
This means that the error trapping mechanism allows a procedure to
be terminated other than by using the word RETURN or by reaching the
end of the procedure, and in this case, it allows a new entry to be made
and the procedure to be re-entered.

171



Psion LZ: A Dabhand Guide

Sound System

The beep of the Organiser, familiar by now, can be controlled by a
BEEP instruction, or used as it is by the line PRINT CHR$(16). Beep
control uses the instruction BEEP which is followed by two integers.
The first integer gives the time of the beep in milliseconds, ie,
thousandths of a second (so that using 1000 for this number makes the
note last for one second) and the second number determines the pitch
of the note. Figure 6.1 shows the numbers which can be used for a
range of musical notes, and the listing which follows it shows a use of
BEEP in a musical interlude of about the same artistic level as that
created by ice-cream vans.

(a) Note Number Note Number
C 1532.93 F# 1127.20
C# 1491.12 G 1069.14
D 1385.03 G# 1014.69
D# 1316.46 A 962.00
E 1250.14 A# 912.55
F 1187.02 B 864.70

The set of notes starts at piano Middle C. For other notes, use the OPL
procedure below, finding the note frequencies from a data book that
deals with Sound. Use integer approximations after calculating
numbers.

()

local n, f

do
print "Frequency",
input £
n=921600/(78+2*f)
print n

until £=0

Figure 6.1. The BEEP numbers (a) that determine pitch, shown for an octave
from Middle C. Other note numbers can be calculated by using the formula
shown in the manual, or using the program in (b).

172

Finishing Touches

pro6x9:
local x5(44),n%
n%=1
x$="08131059105907281059062008130728065906200728"
do

beep 250,val (mid$ (x$,n%,4))

pause 1

n%=n%+4
until n%>44

The numbers which create the note pitches are held in a string array,
as set of four digits, so that they can be read in turn with a MID$
instruction and converted to number form by VAL. The time of each
note is uniform at 0.25 seconds, and a short pause has been put in to
separate the notes.

Better effects can be obtained if the note duration is controlled as well
as the pitch, but the main use, of drawing attention to something, is
fulfilled by almost any sequence of notes. There is no provision for
altering the volume of notes, and you would hardly expect such
luxuries in what, after all, is only a beep command.

Miscellany

Some of the remaining instructions are of less importance, others less
used (though not less useful). The UDG (User Defined Graphic)
instruction is well-illustrated in the manual, but you have to remember
that each user-defined graphic replaces one of the standard set, and
will exist only while the OPL program is running. If you use your
Organiser for business purposes you are not very likely to need the
UDG provisions, and if you want a machine for games then you can
buy a specialised games machine for a fraction of the cost of the
Organiser.

The CURSOR ON instruction switches the familiar Organiser cursor on
for OPL programs, and CURSOR OFF switches it off again, the normal
default. The whole Organiser can be switched off from OPL by using
OFF, and an interesting variation on this is OFF X%, which will allow
the machine to be switched off for a number of seconds that can range

173



Psion LZ: A Dabhand Guide

from one to 1800 (30 minutes), with the variable X% containing the
number, or the number used directly as in OFF 60.

The keyboard state can also be controlled from OPL, using the KSTAT
instruction. KSTAT has to be followed by a number in the range one to
four, and the effect is to alter the keyboard so that pressing a key will
produce either:

1) lower case alphabet (the normal state, with SHIFT giving a
number or symbol),

2) upper case alphabet entry (as when the CAP key has been
activated, giving a number or symbol when the SHIFT key is .
used),

3) number (as when the NUM key has been used, with SHIFT giving
upper case letters), or

4) number, with SHIFT producing lower case letters.

The program listed below (‘proéx10’) illustrates this briefly, using a
different KSTAT number for each (string) entry:

pro6xl0:

local x%5(2),n%

n%=1

do
kstat n%
print"Try 2 keys"
input x$%
print" (press any key)"
n%=n%+1
get

until n%>4

The CLOCK command is used in the form CLOCK(1) to display the clock
in the upper right-hand corner of the screen while an OPL procedure is
being run. Note that this makes some of the UDG character numbers
unavailable, since they are used for the clock display. The clock is
turned off by using CLOCK(0). The instruction can also be used in the
form X%=CLOCK(Y%), and the number that is returned to variable X%
will show the previous state of the clock, 1 or 0.

174

Finishing Touches

RANDOMIZE is followed by a number, and it will use that number as a
source of the ‘random’ numbers that are generated by RND.

pro6xll:

local n%

n¥=1

randomize 2

do
print int (rnd*10)
n%=n%+1

until n%>4

get

The procedure above (‘pro6x11’) uses RANDOMIZE 2 to make the
number ‘2" the ‘seed’ for RND, and the DO loop than prints four
numbers generated at random. If you run this several times, however,
you will see that the four numbers are always the same.

This can be useful for test purposes because it allows you to duplicate
conditions on each run. If you want more truly random numbers, use
RND without RANDOMIZE, or use a different seed number in
RANDOMIZE in each run, such as a number obtained from the time.

There exist two functions concerned with memory space. FREE gives
the number of bytes left in the work space, of the order of 21000 on my
Organiser. SPACE is used to get the amount of free space left in the
current file, and the file must be opened before the SPACE command
can be used.

Finally, there are functions COPYW and DELETEW which act on any
files (not just OPL data files) and which have to be used with
considerable care to avoid wiping out your Diary or Notepad files.

Tail End

OPL is a remarkably powerful and useful programming language,
giving the Organiser capabilities well beyond the reach of any
programmable calculator, and rivalling the facilities on many desktop
machines.

The OPL of the LZ machines is enhanced as compared to that of the

175



Psion LZ: A Dabhand Guide

earlier machines, and it now offers true pocket computing for the
programumer, along with a very useful and modern form of syntax. The
purpose of this book has been to introduce OPL in an accessible way,
with illustrations that show the actions of the instructions better than
any description. The rest is up to you — happy programming!

176

A : The PC Link &Z

The PC Link consists of a cable which will connect the Organiser to a
PC desktop (or portable) machine which is fitted with a serial port,
along with software which will allow the PC machine to transmit or
receive files. The cable supplied is intended for the equivalent of the
IBM PC or XT type of machine, and for the AT type of machine a
different plug ending is required - see your dealer for a suitable
adapter. Exchange of files with other types of machines is possible, but
you are very much on your own when you elect to use any machine
that is outside the PC mainstream. For that reason, only the exchange
of files with the PC will be described here.

The supplied disc of software should be copied, keeping the original in
a safe place. If you use a hard-disc PC machine, create a directory with
a name such as PCLINK and copy the programs on the disc to this
directory. You can also create a subdirectory called DATA or OPL to
hold transferred files or files which are to be transferred, so that the
program files remain in one directory and data files in another.

If you use a twin-floppy PC machine, place the PC LINK programs disc
copy in drive A and a formatted blank disc, the data disc, in drive B. If
you use a single drive machine you will be prompted when to swap
discs. The important program in the PC Link set is called CL and this
program will call others into use as needed, which is why the disc
must remain in the A: drive, or the programs in the current directory
of a hard disc, while PC Link is being used.

When the Organiser and the PC are connected by the cable, the
Organiser will be automatically switched on when the CL program
runs. This allows you to use the COMMS menu selection. The first
action is setting up, and for transfers of OPL source programs or
Organiser files the method is much simpler than you might think from

177



Psion LZ: A Dabhand Guide

scanning the manual, provided you are operating along the cable and
not by way of a telephone line.

In this Appendix, for reasons of space, only the straightforward link
using the cable between the two machines will be considered.

To set up ready for use, the following will be needed once only -
assuming that the machines are connected and the PC is running the
program CL:

1)  Select COMMS from the menu — you will get a DEVICE MISSING
message if the link is not present.

2) The menu that appears is:

Transmit Receive Setup
Term Auto

3) Select SETUP. Use the down-arrow key to select PROTOCOL.
4) Now use the right or left arrow key to select PSION.
5)  Press MODE, select EXIT.

This is all that you need to ensure connections to a PC machine
through the cable link. Once this is done, the transfer of OPL files is
done as follows, dealing first with transmission of files. Once again,
the machines must be connected and the PC running CL.

1) Select COMMS, then TRANSMIT.
2) Select PROCEDURE from the choice of File or Procedure.

3) Type the name of the procedure as it exists in the RAM of
the Organiser. Press EXE.

4) Type the name for the file in the PC. If this is to be on the B disc,
precede the name with B:. If this is to be on the OPL directory of a
hard disc, precede the name with OPL/.

Examples: B:OPL1 OPL/OPL1

178

The PC Link

5)  Press EXE. The file will transfer, with a loud beep at the finish. The
screen message on the PC will alter at times during the transfer,
returning to normal at the end.

The transmission of files from the Notepad (those without passwords)
or the Diary follows the same pattern, but the FILE option rather than
the PROCEDURE option is taken in the small menu that appears when
you select TRANSMIT.

To receive a file, ensure that the link is connected and the PC software
running.
1)  Select RECEIVE, and specify PROCEDURE.

2) Type the name of the procedure as you want it in the Organiser
not as it exists in the PC.

3) Type the name of the PC file, which might include a drive letter
and /or directory path.

4) Press the EXE key, and the file, if it can be found, will be
transferred.

Note that if a file of the same name already exists in the Organiser, you
will be asked if you want to delete this file first. There will be no
transfer unless the file is deleted or you return to the command and
use a different name. As before, the other types of Organiser files can
be transferred by using the FILE option rather then the PROCEDURE
option.

179



Psion LZ: A Dabhand Guide

180

B: Boolean Actions &Z

The logic actions of AND, OR and NOT appear at first sight to have very
odd effects when used on numbers. The effects can be understood only
if you know how numbers are stored in binary form, and if this is a
closed book to you, then I suggest that you look at a book on machine
code programming — though you are unlikely to find a book that deals
with the machine code of the Organiser. The important point as far as
we are concerned here is that OPL stores all numbers in binary form, as
a set of 0's and 1’s, and the logic actions work on these binary
numbers. If you type NOT(?) for example, then you are acting on the
binary form of seven, which, if stored as an integer, is
0000000000000111. The action of NOT is to change each 1 to 0 and each
0 to 1, so that the result is 1111111111111000. This is the number 66528
in denary, but OPL follows the normal convention that any integer
number above 32767 is a negative number, and its true value is
obtained by subtracting 65536. This makes the result of the command
NOT(7) equal to -8.

181



Psion LZ: A Dabhand Guide

182

C : ASCII Codes

ASCII Codes in Denary and Hex

No.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Hex
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39

Char
(space)

|
#
$
%

&
(
)

+

’

O 0O NI e DN O N

No.
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

Hex
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
SF
60
61
62
63
64
65
66
67
68
69

l_l:,
N

=
N
=1

>— -, NRXSES<CHOIONAN

oo ™Moo O N o i

183



Psion LZ: A Dabhand Guide

184

No.

58
59
60
61

62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79

Hex

3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

Char

OZZURT " IZTOTEHOIN®E»® 2V I A~ =

No.

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Hex

6A
6B

6D
6E
6F
70
71
72
73
74
75
76

78

7A
7C
7D

7E
7F

(@]
=
N
"

TR LoD OB R SR

D : Dabhand Guides &Z

Introduction

“Up to the usual high standards we have come to expect from Dabs
Press...... I for one am eagerly awaiting Dabs Press’s next attempt to cut
away more swathes of complexity from the software and hardware world.”

Just two quotes taken from a swathe of complementary reviews now
appearing and covering the ever increasing range of Dabhand Guides.

There follows a list of some of our recent and forthcoming titles. If you
are interested in any of these books, details of how to obtain them are
given at the end of the list. Currently our range of books covers:

* 788

* IBM Compatibles
* Amiga

¢ Archimedes

e BBC Micros

* General books

788

Z88 PipeDream: A Dabhand Guide by John Allen
ISBN 1-870336-61-5. Price £14.95. Available now.
PipeDream is the revolutionary integrated business software package

which has been at the heart of the Cambridge Computer Z88 portable’s
success.

In this Dabhand Guide, John Allen provides you with the definitive
introduction and reference work on the package.

185



Psion LZ: A Dabhand Guide

Practical application is one of the many themes running through the
pages, and varied examples, both simple and complex, contained in its
pages are both informative and useful.

No prior knowledge of PipeDream itself is required to use this book,
only a basic understand of the Z88, as provided in the book you are
now reading.

The many features of this book include:

* Word Processing

* Using the spreadsheet as a database

* Integrating spreadsheet

* Headers and footers

* Page setup, and use of the printer driver

* Printer Control

* Using the menus

¢ Transferring to and from the PC, Macintosh and BBC
¢ Third party software

John Allen is a dedicated Z88 user, and is a widely published writer
and broadcaster on Z88 and other computing and technological topics.
He is currently the Science and Environment correspondent for LBC
Crown FM and Independent Radio News in London.

Z88: A Dabhand Guide by Trinity Concepts
1SBN 1-870336-60-7. Price £14.95. Available now.

This book is the most comprehensive guide for all users of the Z88
portable computer, and is indispensable for anyone wanting to get the
most out of their machine.. All of the standard built-in applications
programs, including PipeDream, are covered, and clearly explained,
using easy-to-follow examples, and many hints and tips are included
en route. In addition, the book also shows you how to transfer files
between machines, using the optional link products. No previous
knowledge is required or assumed in the book, which includes much
previously unpublished information.

186

Dabhand Guides

The many topics covered include

* PipeDream

¢ The Filer

* Printing, and printer drivers

* EPROM and RAM cartridges

¢ Machine expansion

e The Diary, Calendar, Clock and Alarm
¢ File transfer to/from PCs, BBCs etc.

* Modem communications

» Introduction to BBC BASIC

* Useful appendices

This book is from Trinity Concepts, the partnership who designed the
Cambridge Z88 Operating System software, and many of the standard
applications. Their understanding of the way the Z88 works is second
to none, as you will quickly appreciate from the pages of this book. No
serious user of the Z88 should be without this guide.

IBM PC COMPATIBLES

Windows: A Dabhand Guide by Ian Sinclair
ISBN: 1-870336-63-1. Price: £14.95. Available now.

Windows gives the MS-DOS user a view into the future, the way that
the high power machines of the 90s, and their users, will operate. You
can take full advantage of this power with this Dabhand Guide to one
of the most sophisticated operating environments yet written for the
IBM PC and its compatibles.

In this book Ian Sinclair, the UK’s premier computer author, provides
you with the definitive introduction and reference work for Windows,
including the 286 and 386 versions.

The book gives simple step-by-step examples which help you install
Windows on your computer...get up and running...use the numerous
utilities supplied with the software to best effect...and gradually
progress to more advanced use of Windows.

187



Psion LZ: A Dabhand Guide

It is packed with hints and tips that show even experienced Windows
users how to get the best performance from their software, and also
how to fine-tune it to get the very best from existing software.

The book shows you how to get your favourite non-Windows
programs up and running under Windows. Step-by-step and with
numerous hints and tips you need never see the M5-DOS prompt again.

Ian Sinclair also shows you how other Windows-based software can be
run to best effect and take advantage of a common working
environment to exchange data. Samples of use include Excel, Ami,
PageMaker and many more are given. And, of course, the book
provides full details on all the Windows applications supplied with
the system

Windows: A Dabhand Guide helps you to realise the full potential of
Windows to become a true Windows power user.

Ability and Ability Plus: A Dabhand Guide by Geoff Cox
ISBN 1-870336-51-8. Price £14.95. Available June 1990.
In this book, Geoff Cox provides a no-nonsense comprehensive

tutorial and reference to this popular integrated package for IBM
compatible computers including the Amstrad range.

All aspects of all the modules are covered, and by the use of examples,
you are shown how to perform a range of business tasks and how to
use the programs in conjunction with each other, including
transferring of data.

Geoff Cox works as a Sales Director in a scientific industry, and is an
experienced writer and programmer.

GW-BASIC: A Dabhand Guide by Geoff Cox
ISBN 1-870336-10-0. Price to be advised. Available Summer 1990

In this large and highly practical guide to GW-BASIC, the language
supplied as standard with most IBM PC compatibles, Geoff Cox shows
you how to make the best use of the language to write your own

188

Dabhand Guides

programs. Starting with simple examples, the book moves on to quite
sophisticated programming techniques, but never fear, the author’s
friendly and relaxed style make the whole process totally painless.

The second half of the book contains a complete reference to all GW-
BASIC commands, together with examples of their use. The book also
covers BASICA, QuickBASIC (up to version 4.5) and TurboBASIC.

Supercalc 3: A Dabhand Guide by Dr A A Berk
ISBN 1-870336-65-8. Price £14.95. Available now.

This is a complete tutorial and reference guide for one of the most
popular pieces of software of all time—the SuperCalc spreadsheet, and
in particular, versions 3.1 and 3.21 for the Amstrad PC1512, PC1640,
and other IBM PC compatibles. The book is also applicable to certain
degree to SuperCalc 2 for CP/M computers.

Dr Berk specifically writes to appeal to both the beginner and more
experienced user, and packs the book with examples which should
spark off many new ideas, based on your own work or home situation.
Even those completely new to using computers will find the book
perfectly comprehensible, yet the book omits nothing in its coverage.

Every aspect of setting up, using and applying the spreadsheet is
described in detail. Commands, formulae, graphics, and files, to name
but a few, are all explained in depth, and by frequent example.

Dr Berk is a full-time computer consultant with more than ten years
experience of training people in the use of computers, and applications
such as SuperCalc. This is his eighth book, the previous seven having
covered a variety of topics in computing and engineering.

WordStar 1512:A Dabhand Guide by Bruce Smith
ISBN 1-870336-17-8. Price £14.95. Available now.

This is the most comprehensive tutorial and reference guide ever
written about the WordStar 1512 and WordStar Express
wordprocessors on the IBM/Amstrad PC and compatibles.

189



Psion LZ: A Dabhand Guide

Both beginner and advanced user will find the book to be a valuable
companion whether writing a simple letter or undertaking a thesis. No
prior knowledge of computers or wordprocessing is required, yet no
stone has been left unturned, and all aspects of using the program are
covered in Bruce Smith’s own inimitable style. The book is applicable
to both versions of the wordprocessor and to the Amstrad 1512 and
1640 models, as well as other IBM compatibles.

Features covered include:
* Rulers and Margins
» Copy, Move and Delete
* Find and Replace
* Format and Justify
¢ Dot Commands
* Page Layout
* How to use the Spelling Checker
* Step-by-step guide to mailmerge
* Using Boost
* Hints and Tips
* Complete Unique Reference Sections

Bruce Smith is one of Britain’s most prolific computer writers, with
over 20 books published to date, and countless magazine articles.

COMMODORE AMIGA

Amiga 500 First Steps: A Dabhand MiniGuide by Clive Grace
ISBN 1-870336-86-0. Price £14.95. Available Summer 1990.

This book is the perfect introductory guide to the Commodore Amiga
500. Its sole aim is to guide you through those first few months of
ownership as an easy-to-read supplement to the Amiga User Guide
and assuming absolutely no prior knowledge.

Its practical easy going approach introduces the various software and
hardware components of the Amiga 500 and describes in detail how to
put the machine to best use.

190

Dabhand Guides

The Introductory Discs contain a wide range of useful programs which
are also fully covered. But this book goes beyond this and also
describes the many software and hardware additions available to the
Amiga owner, and how to choose and install them.

The many features of this book include
* Applicable to Workbench 1.2 and 1.3
* Using the Desktop
® Using the RAM and Disc Filing Systems
* Using Notepad
* The Introductory Disc programs
¢ The CLI
* The PC and BBC BASIC Emulators
* Hardware additions
e Using a printer
* Detailed Glossary of terms

Clive Grace is a dedicated Amiga user and a regular contributor to
Your Amiga magazine He was formerly Editor of A&B Computing
magazine and is currently Production Editor on PC User.

AmigaBASIC: A Dabhand Guide by Paul Fellows
ISBN 1-870336-87-9. Price £14.95. Available May 1990.

AmigaBASIC: A Dabhand Guide provides a fully structured tutorial to
using AmigaBASIC on the whole range of Commodore Amiga
computers.

Practical application is one of the many themes running through the
pages and as such the many varied programs contained in its pages
are both useful, and informative in programming technique. You are
assumed to have a grounding of the way in which your Amiga works
but no prior knowledge of BASIC itself is necessary. A general theme of
graphics is applied to the many examples throughout the book so that
the techniques described are visually reinforced.

The many features of this book include:
* Writing and editing a program
* Handling and understanding errors

191



Psion LZ: A Dabhand Guide

e Communicating with the user

* Text handling

» Graphics, the palette

* Animation, sprites and collisions

* Sound, Voices and speech

¢ Structured programming

¢ File handling

* Writing large programs

* Debugging programs

* Memory and resource management

AmigaBASIC: A Dabhand Guide is one of the most comprehensive and
informative books on this topic, and an indispensable reference to any
AmigaBASIC programmer.

Paul Fellows is a professional computer programmers and writer, with
many years of experience the the field. '

AmigaDOS: A Dabhand Guide by Mark Burgess
ISBN 1-870336-47-X. Price £14.95. Available now.

This is a comprehensive guide to the Commodore Amiga, and it’s disc
operating system, covering releases 1.2 and 1.3 of AmigaDOS/
Workbench. It provides a unique perspective on this powerful system
in a way which will be welcomed by the beginner and experienced
user alike.

Rather than simply reiterating the Amiga manual, this book takes a
genuinely different approach to understanding and using the Amiga
and contains a wealth of practical hand-on advice and hints and tips.

Among the many features in this book are:
* Full coverage of AmigaDOS 1.3 functions
* Filing with and without the WorkBench
* The Amiga’s hierarchical filing system
* Pathnames and device names
e The Amiga’s multitasking capabilities
* The AmigaDOS screen editor
* AmigaDOS commands

192

Dabhand Guides

* Batch processing

* Amiga Error code descriptions
* How to create new system discs
* Use of the RAM discs

* Using AmigaDOS with C

Mark Burgess holds an Honours degree in Theoretical Physics and is
an expert in all things Amiga. He writes computer programs in many
programming languages.

BBC MICRO

BBC Micro Assembler Bundle by Bruce Smith
ISBN 1-870336-08-9. Price £4.95 (inc.VAT). Available now.

This is a five part package of materials for anyone starting out learning
assembly language/machine code programming on the BBC Micro/
Master Series.

BBC Micro Assembly Language is a 204-page introduction to
programming the machine in 6502 assembly language/machine code.
It assumes no prior knowledge whatsoever, and takes you to a
reasonable level of proficiency in the subject

BBC Micro Assembler Workshop starts where the previous book leaves
off, progressing further into the subject, with a host of useful type-in
utilities, which are also informative in machine code technique.

The third and fourth parts of the package are two discs, one to
accompany each book, containing the programs from the book. Over
90 programs are included on these discs.

Finally, an extra booklet has been produced covering the further
opcodes and features on the Master Series, bringing the books bang up
to date.

The whole package is available exclusively from Dabs Press for £4.95
whilst stocks last.

193



Psion LZ: A Dabhand Guide

Master 512: A Dabhand Guide by Chris Snee
ISBN 1-870336-14-3. Price £9.95. Programs Disc £7.95 inc.VAT. Available
now.

This is a comprehensive reference guide for all users of the Master 512
Acorn’s PC-compatible add-on for the Master 128 and BBC Micros.

!

Highly practical in approach, the book provides detailed information
on all DOS Plus commands, and explains how they differ from MS-DOS.
It shows ‘step-by-step’ how to install and run PC applications on the
Master 512, including useful techniques such as the creation of batch
files.

In addition, the use and operation of the utilities provided with the
machine are explained, many of which are previously undocumented.

Features of the book include:

* Summary of DOS Plus commands and reserved words
* Transient utility programs

* Differences between DOS Plus and MS-DOS

* How to check if PC software will run

¢ The Master 512 disc set

¢ Use of hard discs

Chris Snee is a consultant in the fields of personal computers and
mechanical engineering. His considerable expertise with the BBC Micro
and PCs has been derivied from writing practical applications
software, and troubleshooting. This is his second book, his previous
one Mastering the Disc Drive receving much acclaim.

“The book has the pleasing and informative style that Dabs Press seem
to encourage. It is neither over-technical nor over-simplistic in
approach, but deals with the subject in a logical and understandable
manner that reveals the author as a master of the machine” Micronet
800 (March 1989).

The companion disc contains many useful programs, including a full
disc sector editor, the only one available which edits the Master 512
800k disc format.

194

Dabhand Guides

Master 512: A Dabhand Technical Guide by Robin Burton

ISBN 1-870336-80-1. Price £14.95. Program disc £7.95 inc. VAT.
Available Summer 1990

This second volume on the Acorn Master 512 covers the more technical
issues associated with the system, and provides useful information on
technical utilities provided with the system, such as EDBIN, the binary
file editor.

A disassembled listing of the BIOS source code is also provided, as is a
special hardware project to increase the memory of your 512 board.

Robin Burton is an experienced professional programmer, and
computer journalist. He is the author of the Dabs Press HyperDriver
software package for the BBC Micro, and the co-author of Mini Office
II: A Dabhand Guide.

Master Operating System: A Dabhand Guide by David Atherton

ISBN 1-870336-01-1. Price £12.95. Program Disc £7.95 inc. VAT.
Available now.

Now in it's second edition, this is the definitive reference work for
programmers of the BBC Model B+, Master 128, and Master Compact
computers. It also contains much material of interest to BBC Model B
and Electron users. The book covers all the features of the Acorn
machine operating system (MOS) including:

* All ‘star’ commands on all models

» 65C12 opcodes (including Rockwell additions)

¢ All new OSBYTE/OSWORD and other system calls
* Sideways and Shadow RAM programming

* ROM service calls (complete) and header code

¢ Driving the Tube in both directions

Also included is a complete list of differences between the various
Acorn computers, and in one convenient place, all those vital tables
that you need when programming your BBC computer. The Shadow
and Sideways RAM and Tube chapters are expanded to provide

195



Psion LZ: A Dabhand Guide

application ideas, and the book is liberally sprinkled with program
listings.

David Atherton was manager of BBC Soft, the BBC’s own software
house for three years and is a regular contributor to BBC Acorn User
magazine, and is widely respected as an authority on the BBC Micro.
He is now the proprietor of Dabs Press.

“Serious users shouldn't be without their copy of this invaluable book” A&B
Computing (November 1987).

Mastering Interpreters and Compilers by Bruce Smith

ISBN 0-563-21283-7. Price £14.95 incl. programs disc (incl.VAT).
Available now.

This clear and comprehensive introduction to the often misunderstood
topic of computer language interpreters and compilers emphasise the
practical side of the art. It moves gradually from the idea of a ‘wedge’
in the BBC computer’s operating system, to a simple interpreter, a
simple graphics language, threaded interpretive languages (including
FORTH), and finally, a stand-alone compiler. Listings of all the
implementations are given. To save typing time, these listings are also
supplied as a disc

This book will give anyone with a good knowledge of assembly
language the foundation upon which to build an interpreter or
compiler of their own.

Bruce Smith has written over twenty books on computing topics, and
is a former Technical Editor of Acorn User magazine.

Mini Office II: A Dabhand Guide by Bruce Smith and Robin Burton

ISBN 1-870336-55-0. Price £9.95. Program Disc £7.95 inc.VAT. Available
now.

Bruce Smith and Robin Burton have joined forces to write this official
tutorial and reference guide to the award-winning and revolutionary
Mini Office II software. This book covers the BBC Micro and Master
versions of the program.

196

Dabhand Guides

New and existing users will find the book to be a veritable mine of
information, covering the everyday use of all the modules, and
providing much data never before published. The approach is a
practical one throughout, using worked examples for you to try
yourself. Divided into logical, easy-to-read sections, it deals with each
of the Mini Office II modules, providing many hints and tips en route.
You'll get so much more out of your Mini Office II software after
reading this book.

The many features of the book include:
* File Management
* The Wordprocessor
* Mailmerging
* The Label Printer
* The Database
» The Spreadsheet
» Graphics
» Communications

Bruce Smith is an establised computer book author, with over twenty
published titles to his credit. Robin Burton is a professional
programmer, devoted BBC Micro user, and columnist in Beebug and
A&B Computing magazines.

View: A Dabhand Guide by Bruce Smith
ISBN 1-870336-00-3. Price £12.95. Disc £7.95 inc.VAT. Available now.

Now in it’s second edition, this is the most comprehensive tutorial and
reference guide ever written about the Acornsoft VIEW wordprocessor,
for the BBC Micro, and issued as standard (but without a manual!) on
the BBC Master 128 and Compact computers.

No stone has been left unturned, and all aspects of wordprocessing are
covered. In addition a suite of VIEW utility programs are provided for
you to type in, including View Manager, an easily extendable menu-
driven system for managing your documents. Thorny subjects such as
macros, page layout and printer drivers are revealed in Bruce Smith’s
well-known relaxed style.

197



Psion LZ: A Dabhand Guide

“It's very good...I liked it very much” Radio London. “much more to offer the
competent VIEW user...practical and down-to-earth...for those who want a
complete, thorough and readable guide to VIEW, then Bruce Smith is your
man.” Beebug magazine (June 1987). “This is the first computer book I've
read in bed for pleasure, rather than to cure insomnia” Acorn User
(September 1987). “Many teachers who have struggled with VIEW will find
this book particularly helpful” IT in Education/Network User (September/
October 1988). “Smith brings a depth of understanding to View which

should appeal to both novice and regular user” Micro User (November
1987)

ViewSheet and ViewStore: A Dabhand Guide by Graham Bell

ISBN 1-870336-04-6. Price £12.95. Program Disc £7.95 inc. VAT.
Available now.

This is a complete tutorial and reference guide for the ViewSheet
spreadsheet and ViewStore database manager for the BBC Micro
model B/B+, Master 128 and Compact computers. Whether you wish
to check your bank statement or run a million-pound business, this
book is for you.

Every aspect of setting up and using a database and spreadsheet is
covered, and numerous examples are provided to guide you.

There are also a number of utility programs to help you get more out
of the VIEW family, including programs which join two databases
together, and help transfer spreadsheets into a wordprocessor.
OverView and ViewPlot are also examined and explained.

The many features of the book include:
* Usable with DFS, ADFS or network
* Simple spreadsheets and databases
* Absolute and relative replication
* Building an invoice system
¢ Database design
* Use of SELECT and REPORT
* Using a printer

198

Dabhand Guides

* Hints and Tips
¢ OverView and ViewPlot

Graham Bell is a former editor of BBC Acorn User magazine, and an
expert on the VIEW family, about which he has written numerous
magazine articles. He is a graduate of Oxford University.

“If you are one of the people for whom the normal ViewSheet and ViewStore
manuals may just have well have been the Rosetta Stone, then this book is
definitely for you...This guide is the sort of invaluable reference tool that all
serious users of the View business suite need...Having read two of the
previous Dabhand Guides and found them both to be irreplaceable works, I for
one am eagerly awaiting Dabs Press’s next attempt to cut away more swathes
of complexity from the software and hardware world.” Electron User (June
1988). “...the practical examples given are far greater than those in the
original Acorn manual. You certainly feel that the manual has been put
together by someone who has explored the facility thoroughly.” Oldham
Evening Chronicle (16th June 1988). “Some really useful software is
provided with the book” IT Education/Network User (September/
October 1988).

ACORN ARCHIMEDES

Archimedes Assembly Language: A Dabhand Guide by Mike Ginns

ISBN 1-870336-20-8. Price £14.95. Programs Disc £9.95 inc. VAT.
Available now.

Learn how to get the most from the remarkable Archimedes micro by
programming directly in the machine’s own language, ARM machine
code. This is the only book that covers all aspects of machine code/
assembler programming specifically for the entire Archimedes range.

For those new to assembler programming, this book contains sections
which take you step-by-step through new and exciting areas of
Archimedes programming, including many examples using the
features of the RISC OS Operating System, including the co-operative
multitasking environment.

199



Psion LZ: A Dabhand Guide

* Practical tutorial approach with example programs
* Descriptions of all the processor instructions

* Using the Operating System, WIMPs and Vectors

* Co-operative multitasking explained

* Assembler equivalents of BASIC commands

* Sound and graphics in machine code

Mike Ginns holds a First Class Honours degree in Computer Science
from Reading University, and has been programming the BBC and
Archimedes computer for many years. He is a contributor to BBC
Acorn User magazine, and is a full-time systems programmer.

“The contents make the book a welcome addition to the manual provided with
the computer, and will, no doubt, be an invaluable source of information for
many owners of an Archimedes” Everyday Electronics (December 1988)

Archimedes First Steps: A Dabhand Guide by Anne Rooney
ISBN 1-870336-73-9. Price £9.95. Available now.

This book is the ideal starting point for first-time users of the
Archimedes, taking you through the first few days and months of
owning and using the machine.

There is an abundance of software provided with the Archimedes, and
Anne goes through the programs, telling you how to get them started,
and how to get the most out of them. The Edit, Draw, Paint and
Maestro applications are covered in particular detail, and the step-by-
step instructions are fully illustrated with abundant screenshot
illustrations.

Many hints and shortcuts for using the RISC OS Desktop are also
discussed, as are many third-party commercial software packages in
such fields as art, music and so on.

Anne is a professional writer whose previous works include material
for Acorn’s own product guides, and a book on Acorn Desktop
Publisher

200

Dabhand Guides

Archimedes Operating System: A Dabhand Guide
by Alex & Nic Van Someren

ISBN 1-870336-48-8. Price £14.95. Programs disc £9.95 inc.VAT.
Available now.

For Archimedes users who take their computing seriously, this guide
to the Operating System gives you a real insight into the micro’s inner
workings. This book is applicable to any model of Archimedes.

The Relocatable Module system is one of the many areas covered. It's
format is explained, and the information necessary for you to write
your own modules and applications is provided. This tutorial
approach is a common theme running throughout the book.

The sound system is explained and the text includes much information
never before published. The discerning use will revel in the wealth of
information covering many aspects of RISC OS such as:

* The ARM instruction set

* Writing relocatable modules
» Writing applications

* VIDC, MEMC and IOC

* Sound

* The voice generator

* SWIs

* Vectors and Events

¢ Command Line Interpreter
¢ The FileSwitch Module

¢ Floating Point Model

Throughout the book, programs are used to provide practical
examples to use side-by-side with the text, which go to make this
publication the ideal table-side companion for all Archimedes users.

A programs disc is also available containing all the listings from the
book, and some extra useful programs as well.

Alex and Nic van Someren have both worked for Acorn Computers in
their time. Alex is a former Technical Editor of BBC Acorn User

201



Psion LZ: A Dabhand Guide

magazine, and the author of numerous computer-related books. Nic is
an undergraduate at Cambridge University, and an accomplished
programmer.

“Here is an essential book for Archimedes programmers” Micronet 800
(April 1989). “A jolly good read. Lots of really useful information presented
in an accessible and readable manner...this is a clearly written, well presented
book. 1t is up to the usual high standards we have come to expect from Dabs
Press, and I wholeheartedly recommend it to all who want to know more
about their machine’s operating system.” Archive magazine March 1989.

BASIC V: A Dabhand Guide by Mike Williams
ISBN 1-870336-75-5. Price £9.95. Available now.

This is a practical guide to programming in BASIC V on the Acorn
Archimedes. Assuming a familiarity with the BBC BASIC language in
general, it describes the many new commands offered by BASIC V,
already acclaimed as one of the best and most structured versions of
the language on any micro. The book is illustrated with a wealth of
easy-to-follow examples.

An essential aid for all Archimedes users, the book will also appeal to
existing BBC BASIC users who wish to be conversant with the new
features of BASIC V. Major topics covered include:

* Using the colour palette

* WHILE, IF and CASE

* Use of mouse and pointer

* Local error handling

* Operators and string handling
* The Assembler

* Control structures

* Matrix operations

* Functions and procedures

* Extended graphics commands
¢ Sound

* Programming hints and tips

202

Dabhand Guides

Mike Williams has been working with computers for over twenty
years. For the past five, he has been editor of Beebug and RISC User
magazines, the latter being the largest circulation magazine devoted to
the Archimedes.

AMSTRAD PCW

PCW9512: A Dabhand Guide by F. John Atherton
ISBN 1-870336-50-X. Price £14.95. Available Summer 1990.

The Amstrad PCW9512 personal computer word processor and it’s
accompanying software, the LocoScript 2 system has revolutionised
low-cost wordprocessing, and introduced a whole generation of
people to computer-based word processing for the first time.

In this easy-to-follow guide, John explains how to use the program
starting from first principles, with no prior knowledge assumed, either
of the Amstrad PCW system, the LocoScript program or even
computers in general.

You are shown in practical detail how to set the system up to your
own preferences, and how to produce neatly laid out letters, reports,
essays and so on.

Difficult subjects are not avoided, instead they are introduced in a
painless and straightforward way. After you have read this book, you
will without knowing it, become a perceptive and sagacious word
processor user!

F. John Atherton has used an Amstrad PCW machine for many years,
and has trained dozens of beginners on the machine. He has used the
most common questions and problems as the basis for many of the
topics in this book.

203



Psion LZ: A Dabhand Guide

GENERAL

C: A Dabhand Guide by Mark Burgess

ISBN 1-870336-16-X. Price £14.95. Discs £7.95-£9.95 inc. VAT. Available
now.

This is the most comprehensive introductory guide to C yet written,
giving clear, comprehensive explanations of this important
programming language. The book is packed with example programs,
making use of all C’s facilities. Unique diagrams and illustrations help
you visualise programs and to think in C.

Assuming only a rudimentary knowledge of computing in a language
such as C or Pascal, you are provided with a grounding in how to
build up programs in a clear and efficient way.

The differences between various compilers are acknowledged and
sections on the popular compilers for the Amstrad/IBM PC, Acorn
machines including BBC and Archimedes, Atari ST and Commodore
Amiga are included, with notes concerning the ANSI and Kernighan
and Ritchie standard.

Features of the book include:
* Compatible with all popular ANSI and K&R compilers
* Sections for PCs, Atari, Amiga and Acorn
* Step-by-step guide and reference section
* Diagrams to help you think in C
* Debugging hints and tips
* Arrays and string handling
¢ Data structures
¢ Mathematical programming
* Recursion
* Building toolkits
* Using a WIMP environment

Programs discs are available for the Amiga, PC, Archimedes (£9.95
each inc.VAT) and BBC Micro (£7.95).

204

Dabhand Guides

Mark Burgess write computer programs in many languages of which
C is his favourite. He is an honours graduate in Theoretical Physics.

“I wish this book had been available when I was learning C” Personal
Computer World. “...will give even relatively inexperienced programmers a
clear understanding of programming in C."” Elektor Magazine (December
1988)

Software

Dabs Press also publish software for the Acorn Archimedes and BBC
microcomputers. If you have either of these machines, we have a full
and detailed catalogue available. Also, Dabs Press are general
computer dealers for a number of brands, including the Psion
Organiser, and can supply all your computing requirements.

Obtaining Dabs Press Books and Software

You can obtain Dabs Press books from any good bookshop or
computer dealer, or in case of difficulty direct from us, post free.
Orders can be sent by post, telephone or fax. Our address and
telephone number is on page 2 of this book. Payment can be made by
sterling cheque or bank draft, postal order, or Access, Mastercard, or
Visa card. A full catalogue is available free on request. Please state
which model of computer you have.

205



Psion LZ: A Dabhand Guide

206

Procedure Index &Z

Chapter One

Procedure Page Details

prolxl 26 A simple ‘program’ for checking the SAVE and LOAD
actions.

prolx2 28 A short arithmetic program that will print results on
the screen.

prolx3 30  Using quote marks to show that characters have to
be printed on the screen exactly as typed.

prolx4 31  Using the PRINT instruction to place words on the
screen, taking a new line for each phrase.

prolx5 32  The effect of semicolons to prevent a new line from
being taken.

prolxé 33 Spacing lines with PRINT, and in this example using
CLS (unnecessarily) to clear the screen.

prolx7 33 The AT function — this makes use of both column and
line numbers to position the cursor. You can print
anywhere on the screen, and in any order by using
AT.

Chapter Two

pro2x1 37  Assignment in action. The letter X has been used in

place of a number, and the number which is
assigned to X can be changed.

207



Psion LZ: A Dabhand Guide

pro2x2 42  Using string variables. These are distinguished by
the use of the dollar sign. The string variable ‘name’
can consist of up to eight characters.

pro2x3 43  String and number variables might look alike when
they are printed, but they are different.

pro2x4 45 Concatenating or joining strings to make a frame for
a title. This is not the same action as addition.

pro2x5 45 An INPUT to a number variable. The quantity that
you type must be a number.

pro2x6 48  Using GET$ to get a single-character answer.

pro2x7 57  Using trigonometrical functions to find the area of a
triangle.

pro2x8 58  Using random fractions and converting a random
fraction into a random integer.

pro2x9 59 How to use DISP and VIEW instead of PRINT.

pro2x10 61  Illustrating precisions of numbers. A float (floating
point number) is usually stored as an approximation.

Chapter Three

pro3x1 66 A very simple loop using GOTO for the first and
almost only time here. A test has been put into the
loop so that you can stop it by pressing the ‘0" key.

pro3x2 67  Using the DO...UNTIL loop construction. The two
keywords mark the ends of the loop.

pro3x3 68  Using the DO...UNTIL loop for a counted number of
repetitions.

pro3x4 70 A countdown program, decrementing and printing

208

the count, and making use of PAUSE for timing.

pro3x5
pro3x6
pro3x7

pro3x8
pro3x9

pro3x10

pro3x11

pro3x12

pro3x13
pro3x14

pro3x15

pro3x16
pro3x17

pro3x18

71

74

76

82

85
86

87

88

89

91

Procedure Index

A number totalling program which will halt when a
zero is entered.

A Heads-or-tails program that makes use of ELSE
following IF.

A more advanced Heads-or-tails program, which
includes scoring.

Using a WHILE...ENDWH loop for number-totalling.

Incorporating a WHILE...ENDWH loop into a
‘mugtrap’.

Introducing the action of LEN, a member of the string
function family.

Using VAL to convert a number-string into a true
number - showing once again the differences
between strings and numbers.

Number-to-string conversions using FIX$, GEN§$, and
SCI$.

Extracting letters from strings by using LEFT$.

Using the RIGHTS slicing action to extract letters from
the right-hand side of a string.

Slicing from any part of a string, using MID$ with a
position number and a number of characters. These
numbers can, of course, be replaced by variables.

Illustrating the action of LOC to find if one string is
contained within another.

Using ASC to find the ASCII code for letters. Only one
letter at a time can be used.

Comparing words to decide on their alphabetical
order.

209



Psion LZ: A Dabhand Guide

pro3x19

pro3x20

pro3x21

pro3x22

pro3x23

93

94

96

98

100

An array of subscripted number variables. It's
simpler than the name suggests.

Using the list functions on an array, so that statistical
quantities can be calculated from numbers in a
floating point array.

Using strings in an array. The declaration must show
both the maximum number of strings and the
maximum length of each string.

Searching through a list, in this example for numbers
that are exactly divisible by seven. You can choose
for yourself what conditions to put into the IF test.

A Shell-Metzner sort routine for strings. Most of the
time in this program is spent in generating random
‘words’ to test the sorting process.

Chapter Four

pro4x1

prodx2

pro4x3

pro4x4

pro4x5

210

103

107

108

110

117

Making use of a procedure, in this case to centre a
title. The procedure centre:(a$,n%) must be typed,
translated and saved independently, it is not part of
the main procedure.

The alternative of using global variables to pass
quantities between procedures.

Using a procedure to return a value by assigning the
name of the procedure to a variable. The procedure
must contain a RETURN line to specify what value
will be returned.

Using MENU in a (very) imaginary game. Each menu
item selects a procedure to run (only one of which is
actually provided).

A ‘core’ or ‘foundation’ program for the example.

Procedure Index

The ask procedure, written so that it can use a global

ask: 120
variable.

playit: 123  The playit procedure that makes use of the random
number, picks a name and requests the answer.

checkit: 125  The checkit procedure for finding the correct answer.

126  The array contents, along with the global variables

list.

scorit: 127  The scorit procedure which prints the current score.

127  The instruction lines, written last of all, once the

routines are all working satisfactorily.

Chapter Five

pro5x1 135 A procedure that creates a file of strings and
numbers.

pro5x2 138 A procedure for reading a file created by the
previous procedure, and totalling the numbers.

pro5x3 140 A more extensive file management procedure which
contains a menu of actions.

pro5x4 145 A procedure which accepts a date string and a
number as inputs.

pro5x5 147 A procedure which will total numbers in the records
whose dates fall between given limits.

pro5x6 149  Using the EDIT instruction to edit a string quantity
and then use UPDATE to amend the file.

pro5x7 150  Printing a directory with the DIRS instruction — note
how DIR$( “ ) gets the next entry..

pro5x8 150  Anaddition to the procedure which prints the

number of records in each file, assuming that the
files are identically formatted.

211



Psion LZ: A Dabhand Guide

pro5x9

pro5x10

152

153

A data-gathering procedure which will later be used
to provide numbers for use with the list functions.

Reading numbers from a file into an array so that the
list functions can be used.

Chapter Six

proéx1

pro6x2

pro6x3

pro6x4

pro6x5
pro6xé

pro6x7

pro6x8

pro6x9
pro6x10

pro6x11

212

158

159

160

161

164
166

168

170

174

175

Using the DATIM$ function, and the other time
functions which make use of the built-in clock of the
Organiser.

Finding how long it will be to 5.00 pm - purely for
the work-weary.

A procedure to find week and day numbers for a
supplied date.

Printing dates in string form, with day and month
names.

A very simple illustration of ONERR in action.

Altering the previous example so as to re-activate
error trapping on the second attempt.

An amended file-management set of procedures in
which errors due to using a file that is already open
can be eliminated.

Date validation by using ONERR along with a date
function.

An extended set of beeps forming a ‘melody’.

Demonstrating the use of KSTAT to alter the status of
the keyboard CAPS and NUM keys.

Using RANDOMIZE to produce a recurring set of
‘random’ numbers.

Index

* symbol in file SEATCh.....ccv i s
+ SIgN fOT SHTNES oot
+ symbol in file Search.......cccurmiisiiisicinss s,

Algebra

AND operator....
APPEND ..

Argument of functlon

Arithmetic actions..

Array
ASCIT Code taBle. . .cuiiiiisiimiimmisssiiisminisorii wimsrsaimsisein
ASCIeod @i i s L Sy T s
Assignment .......coooiiininenns

Asterisk sign.........
Average.......cournne

BAGCK v

BASIC...

BEEP ..
Bmary operators i
Boolean actions...

Boolean operators
Breaking out of loop A SR SRR

Bubble-sort ...

Business program packs RIS P RS SRR AR

Calc,Natepad.......................................".. .
Calculator memory stores...........

LZ

143
44
143
42

55

i
vererereenn 138
DD
-

93

...89

SR .

80

a3
.28

v 152
139
R4 |
veenre 172
w8
...181

58&8

vensrennna 16
sissssssinsiaB2

213



Psion LZ: A Dabhand Guide

Capital letters...
Centring....

Changing record

Character code use..

CL PrOZTaM. et ieenese st cnbesssnsnns
Clear optlon ;

CLOCK...
Closing f11e

Columns, and Rows

Commands........c.....
Comms Link...............

COMMSE v
COMPATING SEEINGS ciciuiiiiiisisnsioisissiivihmiomissssosianssisssmstsssss sastassassonsensmas st
wisd2

Comparison of numbers.........cceeiciiicnniiii.
Comparison OpPerators........uucmeesiiiesinsissssiies
LOMPIELS «..cmisssivssmssmmrsnmisionseiasssisssiiesriasisis

Concatenation...
Copy, N'otepad
COPYW...

Core program

EEPBBEIT P BN o o nimtn s AR S R A LA PN R AR

CUISOr s

Database ProSrams s s nam s s siaisio
Dates in files i ciniuisuimmmnminsiisismianiisomssmnssrssnsassnsissrasarsasss
Day and week......vwcnnuiinsmigimmiori

DAY v
Dayllght-savmg
DAYNAMES...

DAYS..
Decrementmg loop

214

maniarans

T T T TP T TP T T Y P T T T AT

T T T TP P T TE TR T LT

.14

creernns 146
. 1)
cenvenennn 90
w177
sisiviase2B
e 174
.. 135
G CR
333
cerrerinnnnnn2l)
..

90

N 1
. |
RPROPY:
w17
+.175
119
veerreneen 130
e 134
173
s

112
145
157

..157

157

S b
w161
w197
w?0

Decrementing....
DEL Key...cccoviuinnns
Delete, Notepad
DELETEW ..

DIRS...
Dir, Notepad
Direct command

Dollar SIZI iN NAME . i sisiias ssissmiassisiasoss isbassossssua esoss sssisasssisessasasesias
DUNDNY AR ..o lscisisiisesisiiniiminsaiisns s b s SRS i
DUMMY FECOTA vuvevrnuuriniessinsinsssnsessissssssasssssssssssrsassanssossssass seossasmssssssassns

EDIT....

Elapsed tn‘neprogram e

ELSE...

w14

End cursor .......ccceovinnens

ERR..
Error 194

ERROR DEVICE MISS]NG rnessage

Error trapping....

ERROR TYPE MISMATCH message R I A e T R S T
e 1

EXE key....
Exponent
Ex ponenttatlon

Extracting data by date

Field o RUT DO s ispinsens snisses vins

Field...
File exchange wnth PC
File Open error..

Designing prog‘rams s s s

Index

Bl
w14
e 16
..175
....112
...150
w15
w20

DISP 59144

w67
38
146
.140

..148

....158

i

66
i

..165
....165

....163

17
... 162

e 1 |
)

... 146

e 132
...168

215



Psion LZ: A Dabhand Guide

L OB o R A A s S s e
Find, Notepad.............

Float asa
FN Argument eITor.. S A BT nemasesnensss LTEL
PUNCHONS TSk i mivesiscsimasssasisii i asimmayinin w0
BN CH OIS i s s B R T T T e s s s masesmnmpa e nn D

R T P PR R R T PR PP T PP T RS IR R LT L]

Srssssanrsananiinn

COITIO i v v s st s s s s o v WA T S ST ae s e sbe s veec S
Ao N ATy i e T T i e s i s messibaengerenansamsan D

T T P T P PP T T

Hard SOHV e smmmmsimaaiinisisssiaisssisamismsssiaag
Heads or tails..........ccoiviiiiiiniiniininens IOORION 4 |
Historical entries..... w146
Hofe B0 aanmsmminssisminnisianssamsennmaniaimmaiasinia 1l
HOUR s saiiisismmimiaimssmiammmis i 107

D R T TP T T T T T P T I T LT

T T T T R TP AT P T T R LR ]

Indentlng. R G R i srersarererrans sas D
Instruct:on words 22
o1 7= .3 SN WP SRR SR RS WA REP-p S ST NSRS TN - -
International data.....uuisiiniiimaiimrminaiisemsismemil 1
Interpreters siassseiiniinnnn O

Inverted commas.. SRRSO RRRORRNC | | |

L T T T R TR S TR T LI L]

216

o e

e

Keywords......ovveenne

Label name.. -
Languages, programrmng.. o

aerrenasnssnn

R L LT e P e TP TP

Index

e T L L L L LR T T e P P PR E P PR PR TE P Y

LEFT$ ......... 85

Less than Ve

Line of program ........

sanren

LB PN ONIG ciinsiunsviuvsvsnssvasionieaniosvinsiiss s s s e s v dund i sorinassn

3 1250 oL 4 Lo} | DR S SO SR U

Local Vallios .. i i isssssisississminssvsssisiasssriisinnssvis

Liocal MaTiables ..t v sy s s s bty
LOG FUNCHON. 1 vevtveereessermserienessssssnrassresssesss snnesnsssnsassssssrassasas

erssssasmasans

T T T LT LL LT

.95

106

Loop ... V4 R A A A S o VO VYA A S i s
Low Battery error..

1 B2 Ry 5 11t PO SSRGS R SO

Manual time adjustment ...
MBI 111eerrirrassenieme it asinssr e st st smss st st sbat b 0bs

MODE button R R R S R ers s R
Monte-Carlo method
RS s PRI 2 . ) |

MUGLErap ... s

I T I L L L L LTI T e T TR TP PR R

I L L L T L T T T T T P T P P

w157
e .

217



Psion LZ: A Dabhand Guide

Neat printing.......ccooueeimvssieensinenie s

INested J00PS o vumumsimmrimmmmmsisismmisssomssoissonsassosmsssss
Lo T B
N W s A T S R Bl B A e ses e masmesssms s aas s

NOT operator..........uu.

OFF ....

Operands.......oomssaseens
OIPBFAOIS isiiimmssissrivsssiasis
OR operator.........covneiannne

Qutlineplaitu.ismminnisaisusoisisess

Paper planning .........coucoevevnnnsininnnn

PATAMNOEETS o coiscisvivenviasnosviveisscasviiusissa shasosd iwabaasind
Passing parameters...........ocvecuiansisonicnsisinn:
Passing value back .o asssmmonsssesissmomnsiornins

Password, Notepad.........

Percent sign....ccncnininiiiiinns
PI

Picking out letters..........

Position in SIANG...ssussssissmmemmssssssoseissassorssasenss
810 3 (2)0) (PR ————————

218

w33
w68

15
.24

-.139
] ] e B R e P 1 SO
ol it e ) el ol el ol 1o - NSRRI R
I O O N s i B s s B
Number to String form ... e
NUbET, NOTBPAT iwvisivsi nssonsnsnbssivsiviisiniiiiis s s et

13
83
.62
14

.84

.16

(@30 {73 o7 v 3 T £ LT OO TSRO
ON/CLEAR DUEOIL 1uvuvtiieriitctirescsiemssneresassessssessssnenssnsessassessssssssns snessaen
YRR i vavsvarviwivminsuusidivesse o4 s s o v s Vs e it S e e

A1

.14
v 163
134
N
w8
w211
-1
...114

s 113
e 104
-1
....108
DY | |
ROPTCIRC |
87
..
...139

Precedence Of OPETators ... immsmsssssssssssisssnsrssssssssoasseons
Precigion of floal v e s s
PreciSion Of NUIMNDEIS v einssesinsrmrssinsssesssiessessssssssas sans s saestessnsnsanson
PR THOAIAOTE covccucvisvsuisuisevusiissnsosmsvasssssssis sirssssinssisnassaisa iy sheniaressnsonses
Print, NOtePad .....ccccumimiiisienniriasisincitismsssssssisss s sassassssssisiasisissesssosnsase

Printing out .......cccoeovvinnenene

Procedure design........civivmimmimi s

Procedure........c......

Prog Option ..
Program actionS... i rssssessmesscusesssssensiiesssis sttt ssissssssssssssssssassssssss
Program deSiZI. ..o smsssississsianissmrsssuserssssssssssssbusmisssssssssssissessssiosssssssssise

EE AR FSA ISR AE R AR AR IR FASTARERY

120

Programming ...

QUIlL Pen SYMDBOL..c..ucriiinissessonsssssssnisssssissssnsssressrssssrsssssssssssnsssssssmassssnis
OOV i i oo B A R S B T G VoA Vo W

QUOLES c.cerrecrrncsisr s

Radian, angle measure............c.oovueiiianins

Random numbers.....ccueeimmssinns
RANA O WOTAS iivisiisisincimesiivsnysiv o svsiasisiissiioviis iesnsdosniss

REEEE s vcnmmmumnitiamvmmansdsnds

Relational OPerators.... i
..108
-1

REM lINeS....ccoveirirvnrinvuniirenes
REM.....

RePeLitiON ...cvvviiiiiiitiiiisssis s

Reserved words......ccveeveenniserisans

Rows and Columnsinissismmsmmiimmamiimssamisia i

Save and Load.........cccoeeeennens

R L L L L T R T R TR R ST LA LT

Index

Dl

.39

s,

17

we2?

.23

.
w24
112

.18

213
90
w30

SRR
..166
w100
il 70
..132

48

w67
89

171

.87
.

a0

219



Psion LZ: A Dabhand Guide

SAVE OPYHTE. . coonipmmrasssimmnmiasa b

Save, Notepad.............

OO T TINEBSAGE Lo xnseins oesmsissssiisiss s s i o3 siaa 0os 04
sy I e
5earching array ... eeccusemscei st st essas s
BRCEOT OF SPIOT:cvusuiuuiaiuiaauiiaisi s doas s b S LR
Selection HNes. it msisrnmsiiessnmmmssanessssasasssses

Semicolon ......

Sound ..
SPACE...

Stopwatch....
String array

String for number entry

String functions...

String length T

String names ..
String shcrng

String to number forrn

String variables...
String....

Structured loops e

Subscripted vanable

BUMINBISHIING i ismismiisiinissisivivvainimiavsissidiigo

220

Shipll-MBtENeT BOTE i sty s
Singleskey Peply. i banianimususmmmmtalimdistmmmars:
SO TR P A rvuuisouvsiwvmis et s o G S T e S S
Sorting I OB o T e e s A
i L T2
Standard devratron..
Standard form of nurnber
Statistical WOTK ...cuviciiiiiinissiiesss e srsssssess s ssnssses
w7
veenn 97
vreenB3
80
. ).
e 38
venen86
veveeeneB3
O
28
Y4
R
e dD
T X
a2l

B T F T I TP P T T

2D
a1

84

B9

31

wonas
...157

53

111

.30

vrenenr. 100

R ¥4
R
e 16

152
61

152

74

et RS 00 0 £ TR M S TS

Telephone dialling codes.......covnmecnmmsnrnmmminenimnsmsmsmi,
B EIEINATEINS cvunuunssommnmmmns i smess a5 S8 S N M AR S TV SO
TESUTIE POUBINGE iy st aoss b s omes s s AV I S TS
Time adjustment, MANUAL ...
TR ALSPIAY v suvsvsimvsssiamasssissssavemseinsennsisisissssstsssssssimsensaarmoaserasn

Time OPHON wiscivissississmissiis

Totalling file......

Tran ...

Translatrng forrnulae

TRAP.......

UNAry OPeratOrS. . essssusenmssrssisssonssasrarsnssssosussssosssassossesssersssssonssssssosasasssens
w138
srinese 0

...60

UPDATE...
UPPERS...

Using Integer vanables

VAL ..oiceirinnns

VAT ADL S TIATING Lav.isvisisbonssvnsssssassesisnisshons sspsedssrssrnssas sasamns sossamsstn
L N s i e B T O B P S T S R R R G

Wildeards.conoansammmmnmaisisisiiig

YEAR........

Zap, Notepad ......cousesssssussssssersssmmssssnmssessisnissssonss sosnessassass
Zero, slashed......c.cccvivnninnen,

Index

13
.70
121
13

S & |
I
Gilé
..138
Totalling NUMDErS ... s
e
cxomsard
awianass DO
Trigonometric functions....

48
v

veeenn83
w38

.76

..143

..157

.15

il

221



Psion LZ: A Dabhand Guide Notes



Psion LZ: A Dabhand Guide

224




i A Dabhand Guide mmmms

The LZ models of the wellestablished Psion Organiser extend the uses
of this excellent machine in several directions. The most important
change is to a four-line screen, which allows better use of menus, and
the introduction of several new features, including International time
and telephone code data, a stop-watch action, and the use of a
Notepad which can be password protected.

The expansion of the screen size, along with improvements to the OPL
programming language, however, now make this a machine which is
not only extremely rewarding to program for yourself, but one which
has endless uses through the builtin programs, leading to a better
understanding of the computer.

Whether your LZ is your first Psion machine or a replacement for an
earlier model, you will find here the way to better understanding and
complete command of this outstanding miniature computer.

lan Sinclair is Britain's leading computer author. With over 120 books
to his credit he has established himself as perhaps the most authoritive

and most readable computer writer of his time, a fact which has led to
international acclaim.

£12.95

ISBN 1-870336-92-5

IO

9781870336925




